

Summary

- Energy and work so far:
- GPE
- Work done by friction (\Rightarrow heat)
- Work done by applied forces (by me)

$$
\mathrm{W}_{\text {ext }}-\left|\mathrm{W}_{\text {friction }}\right|=\Delta \mathrm{PE}+\Delta \mathrm{KE}
$$

- Power
- This time
- Kinetic energy
- Water distribution (energy of running water)

New form of energy to think about. Motional or kinetic energy.
$K E=\frac{1}{2}$ mass $\times(\text { velocity })^{2}$

$$
\mathrm{KE}=1 / 2 \mathrm{mv}^{2}
$$

Notice that this has the right units to be an energy: $\mathrm{KE}=\mathrm{kg} \times \mathrm{m}^{2} / \mathrm{s}^{2}$
Energy $=\mathrm{N} \times \mathrm{m}$
$=\mathrm{kg} \times\left(\mathrm{m} / \mathrm{s}^{2}\right) \times \mathrm{m}$
$=\mathrm{kg} \times \mathrm{m}^{2} / \mathrm{s}^{2}$

Push a 0.5 kg cart up 0.10 m .
How much gravitational potential energy (GPE) does it gain?

If we let it roll back down, how fast will it be going when it is back to where it started from?
a. $9.8 \mathrm{~m} / \mathrm{s}$, b. $1.4 \mathrm{~m} / \mathrm{s}, \mathrm{c} .2 \mathrm{~m} / \mathrm{s}$, d. $1 \mathrm{~m} / \mathrm{s}$, e. $0.2 \mathrm{~m} / \mathrm{s}$

Conservation of energy questions
Push a 1 kg cart up 0.10 m .
How much gravitational potential energy gained?

Push the 1 kg cart up 0.10 m . How fast will it be going after it rolls back down?
a. same as the 0.5 kg cart, b. twice as fast, c. $1 / 2$ as fast,
d. sqrt(2) x faster, e. sqrt(1/2) slower.

How high do balls go if you toss them?

Dropping cannonballs onto a board.
What is going to happen to the board?
What forms of energy are involved?
a. Gravitational potential energy
b. Gravitational potential energy and Kinetic energy
c. Kinetic energy and Thermal energy
d. Chemical energy, Gravitational Potential energy, and Thermal energy
e. Gravitational Potential energy, Kinetic energy, and Thermal energy

Conservation of energy summary

- Often your best route for answering mechanics problems (especially when time is not involved)
$-\mathrm{W}_{\text {ext }}-\left|\mathrm{W}_{\text {friction }}\right|=\Delta \mathrm{PE}+\Delta \mathrm{KE}$
- Conservation of energy has been checked in thousands of experiments.
- This principle always works.
- There is no such thing as energy for free, or a perpetual motion machine!

When tackling a new situation/problem to get a solution or to make a prediction about behavior, usually the first thing a physicist does is figure out the different forms of energy, how much there is of each, and how it is being converted between various forms.

Where does the water flow?
What determines the water pressure in different homes/heights?
How fast does water flow out of a faucet?
How do you pump water out of wells?
ALL ABOUT CONSERVATION OF ENERGY!
$\mathrm{GPE}=\mathrm{mgh} . \mathrm{KE}=1 / 2 \mathrm{mv}^{2} \mathrm{PPE}=\mathrm{PV}$
Pumps do work (Force x distance)
(all of the physics of water distribution system)
The super soaker (e.g. squirt guns)

Pump up the pressure inside just a little bit and squirt. If we pump it up more, the water coming out will be:
a. going slower than before, b. going the same speed,
c. going faster.
\quad Pressure potential energy (PPE)
What the heck is pressure anyway?
Pressure $=\frac{\text { Force }}{\text { Area }}$
Units: 1 Pascal (Pa) $=1 \mathrm{~N} / \mathrm{m}^{2}$
The plunger of a syringe has an area of $1 \mathrm{~cm}^{2}$.
I push the plunger with a force of 5 N .
What' s the pressure exerted by the plunger on
the fluid inside?
a) $5 \mathrm{~N} / \mathrm{m}$
b) $5 \mathrm{~N} / \mathrm{m}^{2}$
c) $500 \mathrm{~N} / \mathrm{m}^{2}$
d) $50000 \mathrm{~N} / \mathrm{m}$
e) $50000 \mathrm{~N} / \mathrm{m}^{2}$

Pressure potential energy (PPE)

- New form of potential energy for fluids
- PE is the energy of an object (or fluid) due to its CONDITION (situation, surroundings etc)
- Water of mass m, at height h has associated GPE $=m g h$ because of its (vertical) position
- work (mgh) was done to get the water from ground to that height
- Physical details of how the work was done or how water is being supported is not important
- Water of volume V at pressure P has associated $P P E=P V$ - Work (PV) was done to pressurize the water
- Physical details of how the work was done or how the pressure is being maintained are not important
- Check that PV has units of energy (J)

Apply Bernoulli to Squirt Gun
How is velocity of water out related to pressure inside gun?

$P+1 / 2 \rho v^{2}+\rho g h=E_{\text {total per vol }}$ Height constant so ignore GPE
$\Rightarrow P+1 / 2 \rho v^{2}=E_{\text {total per vol }}$ (constant)
Inside gun: $P=A P+P_{\text {pump }}, v=0 \quad \Rightarrow \quad A P+P_{\text {pump }}=E_{\text {total per vol }}$
Outside gun: $P=A P, v_{\text {outside }}$ is big $\Rightarrow A P+1 / 2 \rho v_{\text {outside }}{ }^{2}=E_{\text {total per vol }}$

$$
\begin{aligned}
A P+P_{\text {pump }} & =A P+1 / 2 \rho v_{\text {outside }}{ }^{2} \\
P_{\text {pump }} & =1 / 2 \rho v_{\text {outside }}{ }^{2} \\
v_{\text {outside }} & =\operatorname{sqrt}\left(2 P_{\text {pump }} / \rho\right)
\end{aligned}
$$

Energy in a water distribution system

- The same three forms of energy exist in a water distribution system - If we add up energy in these forms, the sum must be constant. - It just sloshes back and forth between forms!

$$
\mathrm{PPE}+\mathrm{KE}+\mathrm{GPE}=\mathrm{E}_{\text {total }} \text { (constant) }
$$

$P V+1 / 2 m v^{2}+m g h=E_{\text {total }}$

Since $\mathrm{E}_{\text {total }}$ is constant:

- If one thing changes, the other quantities must change correspondingly. - If pressure changes (water comes out of nozzle), v changes.
- If height changes (go up in building), pressure or v changes, etc.
- Like the cart coasting up and down hills with no friction. Velocity and height are always connected - If you know velocity and height at one place, can calculate it at all others.

More on pressure
Here's a bucket of water with a faucet attached.
What is the pressure at a depth H ?

\uparrow
Bernoulli's Equation:
$P+1 / 2 \rho v^{2}+\rho g h=E_{\text {tpv }}$
Compare water at surface and at depth H
$\mathrm{v}=0$ everywhere $\Rightarrow \mathrm{P}+\rho \mathrm{gh}=\mathrm{E}_{\mathrm{tpv}}$

- At surface: $P=A P, h=0$
$\Rightarrow E_{\mathrm{tpv}}=A P$
- At depth $H: P=A P+P_{w}$, height $=-H$

$$
\Rightarrow \mathrm{E}_{\mathrm{tpv}}=\mathrm{AP}+\mathrm{P}_{\mathrm{w}}+\rho \mathrm{g}(-\mathrm{H})
$$

$E_{\text {tpv }}$ constant $\Rightarrow A P=A P+P_{w}-\rho g H$
water is not moving.

With the faucet off, the water is stopped at point C. Rank the pressures at the three locations shown.

a) $\mathrm{P}_{\mathrm{A}}<\mathrm{P}_{\mathrm{B}}<\mathrm{P}_{\mathrm{C}}$
b) $P_{A}<P_{B}=P_{C}$
c) $P_{A}=P_{B}=P_{C}$
d) $P_{A}=P_{B}>P_{C}$

Now open the faucet. What is the pressure at point C, just outside the faucet?

Bernoulli's Equation in Real Life

Total Energy per volume $=P+\frac{1}{2} \rho v^{2}+\rho g h$

- This is a good approximation but it cannot be perfectly correct -What type of energy does it ignore?
\Rightarrow Think about a narrow pipe.

- Does not consider energy going into thermal energy- from friction with walls etc.
- For example, for high speed flow in a narrow pipe, more water molecules bounce off walls, creating significant friction and energy loss as heat
- But for most water distribution systems, friction can be ignored BE works
very well.

