

Reading quiz

1. Bernoulli's equation is all about
a. Conservation of momentum
b. Conservation of heat
c. Conservation of water
d. Conservation of potential energy
e. None of the above
2. Bernoulli's equation describes
a. How the temperature of water changes as it flows through pipes.
b. The different amounts of water distributed to houses and industry in a typical city.
c. The relationship between pressure, velocity, and height of water in a pipe
d. The relationship between the thickness of water pipes and the pressure of the water they contain
3. When water leaves a hose through a nozzle, the pressure
a. Increases
b. Decreases
c. Stays the same.

What will happen if we remove the air from inside the drum?
a. Nothing
b. The drum will explode
c. The drum will implode
d. Something else

Reading quiz

1. Bernoulli's equation is all about
a. Conservation of momentum
b. Conservation of heat
c. Conservation of wate
d. Conservation of potential energy
e. None of the above
2. Bernoulli's equation describes
a. How the temperature of water changes as it flows through pipes
b. The different amounts of water distributed to houses and industry in a typical city.
c. The relationship between pressure, velocity, and height of water in a pipe.
d. The relationship between the thickness of water pipes and the pressure of the water they contain
3. When water leaves a hose through a nozzle, the pressure
a. Increases
b. Decreases
c. Stays the same.

Bernoulli's Equation
 $P V+1 / 2 m v^{2}+m g h=E_{\text {total }}$

Consider one little bit of water of volume V and mass m :
Replace $m=\rho V$ where ρ is the fluid density
($\rho=$ mass/volume $=1000 \mathrm{~kg} / \mathrm{m}^{3}$ for water)

$$
P V+1 / 2 \rho V v^{2}+\rho \mathbf{V g h}=E_{\text {total }}
$$

$$
P+1 / 2 \rho v^{2}+\rho g h=E_{\text {total }} / V \quad\left(E_{\text {total per unit volume }}\right)
$$

$\mathrm{E}_{\text {total per vol }}$ is constant:
Know P, v and h at one point \Rightarrow can calculate these quantities at another

With the faucet off, the water is stopped at point C. Rank the pressures at the three locations shown.

What will happen if we remove the air from inside the drum?
a. Nothing
b. The drum will explode
c. The drum will implode
d. Something else

What if the pipe from the water tower takes a weird path (say, over hills) to get to a house at the same height?

a) House A has higher pressure
b) House B has higher pressure
c) The pressure is the same at both houses

Answer: c. $P=\rho g h$, so only the height of the house matters. Hint: ignore friction (we'll come back to this)

Here I have a tank of water with a hose connected to the bottom. When I take my finger off the hose, water (under pressure) will squirt into the air. Will the water go higher or lower than the opening in the tank (dashed line)?

Here I have a tank of water with a hose connected to the bottom. When I take my finger off the hose, water (under pressure) will squirt into the air. Will the water go higher or lower than the opening in the tank (dashed line)?

a. Higher
b. Right exactly to the dashed line
c. Lower
d. Impossible to predict
e. None of the above.

Think conservation of total energy per volume
At top of tank: $\mathrm{E}_{\mathrm{tpv}}=\rho \mathrm{gh} \mathrm{h}_{2}$
Water squirts out of hose and reaches highest point of flight:
$P=0, v=0$, height $=h_{\text {top }}$
$E_{\text {tpv }}=\rho g h_{\text {top }}$
$\mathrm{E}_{\mathrm{tpv}}$ the same everywhere
$\Rightarrow h_{2}=h_{\text {top }}$

Here I have a tank of water with a hose connected to the bottom When I take my finger off the hose, water (under pressure) will squir into the air. I can hold the hose high (at A) or low (at B). From which location will the water squirt higher (relative to the ground)?

a. A, the higher location
b. B, the lower location
c. Water reaches the same height from both locations
d. Impossible to predict
e. None of the above.

