

Method	Picture	F _{hand} (N)	d (m)	Work (J)
Shallow ramp	Fheed	1N	2m	2J
Medium ramp	Fhore d h	2N	1m	2J
Steep ramp	F d h	3N	0.66m	2J
Lift vertically	F hand d=h	15.5N	0.115m	2J

- Pedaling on the bike at 150W I produce 150J of useful electrical
- energy each second • And 4×150 = 600J of heat energy
- The ac unit in the gym uses ~200J/s of electrical energy to remove the heat I generate from the room and keep the temperature constant
- So at the gym
 - I produce 150W of electrical energy by pedalling
 - I consume 200W of electrical energy keeping cool
- You'd be 'greener' (consume less power) just going for a regular bike ride outside
- Or better yet ditching the car and doing your errands on a bike

Recap

Applied force is the same if book stationary or moving up/down with constant velocity $(F_{hand}$ = weight =mg)

What about the amount of work done by me? Do I do more work (get tired more quickly) lifting book up and down or just holding it up?

a. same, b. more work if lifting c. more work if holding it up

New form of energy to think about. Motional or kinetic energy.

$KE = \frac{1}{2} mass x (velocity)^2$

$KE = \frac{1}{2} mv^2$

Notice that this has the right units to be an energy: $KE = kg \times m^2/s^2$ Energy = N×m $= kg \times (m/s^2) \times m$

 $= kg \times (m/s) / x$ $= kg \times m^2/s^2$

