

General formula for work done when lifting stuff

In general, the work done raising any object of mass m by height h is
always the same, however we do it.
Can we find a formula for the work done?
Consider lifting vertically:
$\mathrm{F}_{\text {lift }}=\mathrm{mg}$
Work done on object $=F_{\text {lift }} \times d_{l /}$
$=m g \times h$ $=m g h$

Mass of object

$$
\begin{array}{|l|l|}
\hline \begin{array}{l}
\text { Acceleration } \\
\text { due to gravity }
\end{array} & \begin{array}{l}
\text { Vertical height raised } \\
\text { Really the change in } \mathbf{h}
\end{array} \\
\hline
\end{array}
$$

But the work done is independent of the lifting method $\Rightarrow \mathrm{W}=\mathrm{mgh}$ is true for a vertical lift

OR if you use a frictionless ramp of any steepness OR any other frictionless lifting method

Introducing Gravitational Potential Energy (GPE)
Work done raising an object by height $\mathrm{h}=\mathrm{mgh}$
But work done = amount of energy changed

GPE is the stored energy that an object has due to its vertical position (height)
\Rightarrow Raising an object by height h raises its GPE by mgh

$$
\text { GPE }=\mathrm{mgh} \quad \text { (relative to } \mathrm{h}=0 \text {) }
$$

BIG CAVEAT:
h is the amount of distance it changes, not its beginning / final value!
Outline
What we know about energy and work so far......

1.Energy is always conserved
2.Gravitational $\mathrm{PE}=\mathrm{mgh}$
3.Work is the transfer of energy form one form to another
4.W $=\mathrm{F} \times \mathrm{d}_{/ /}$
Last time we looked at work and energy in a FRICTIONLESS
system
This is not realistic most of the time, so today we will include the
work done by frictional forces

Friction and energy

- Work done by friction is always negative
- $F_{\text {triction }}$ always opposite to direction of motion
- Friction always takes energy away from moving object as heat
- Friction takes useful energy (motional) and turns it into heat energy (less useful) but energy is still conserved
- Friction can be annoying

Wastes motional energy of cars, bikes etc so that engines have to work harder

- But is essential in our world
- Enables cars to brake: turns motional energy to heat

CHANGE TO MAGNITUDI

Reminder

Push 15 N weight (wood block) across board at steady velocity Measure force needed.

Constant velocity
$\Rightarrow F_{\text {hand }}=F_{\text {friction }}=5 \mathrm{~N}$
($\sim 0.3 \times$ weight)

Slide block 2 m .
Work done by me on block $=$
Work done by friction on block $=$

Work done by friction force
Pull 15N weight (wood block) across board at steady velocity Measure force needed.

Constant velocity
$\Rightarrow F_{\text {hand }}=F_{\text {friction }}$
$\Rightarrow F_{\text {friction }}=5 \mathrm{~N}$
($\sim 0.3 \times$ weight)
Slide block 2 m .
Work done by friction on block $=$?
a. 2 J , b. -5 J, C. 10 J , d. -10 J

Energy problems

Now we can handle problems with several different kinds of work/energy

- GPE
- $\mathrm{W}_{\text {ext }}$ (work done by hand, rope etc attached to the object)
- $W_{\text {friction }}$

How are they all related?
$\Rightarrow B y$ CONSERVATION OF ENERGY
Consider C of E for an object: block, car etc

Homework - a bunch of calculations

- "Expert" approach:
- Understand and apply (few) basic concepts.
- Realize doing same problems over and over again.
- Different form but applying same concepts \Rightarrow easy.
- Can handle unseen problems in tests.
- "Novice" approach
- New problem, start from scratch each time \Rightarrow hard.
- Try to memorize problems for test - impossible
- "Expert" approach outside of physics
- Many aspects of life (employment) governed by a few basic concepts
- Understand and apply these to solve new and unexpected problems
- VERY valuable skill in the workplace
- Start developing this skill now!!

Human energy
(or how long must I spend on the stairmaster to burn off my chocolate bar?
What the heck is a Joule??
1 J (work or energy) $=1 \mathrm{~N}$ (force) $\times 1 \mathrm{~m}$ (distance)
How much work do I do benchpressing a 40 kg (90 lb) barbell 0.5 m ?
W = F $\times \mathrm{d}$
$=\mathrm{mgh}$
$=(40)(9.8)(0.5)$
$=196 \mathrm{~J}$
But how does that compare to a chocolate bar?
Calories are just another unit for measuring energy
1 food calorie $=1 \mathrm{kcal}=1 \mathrm{CaI}=4184 \mathrm{~J}$.
Decent chocolate bar has 400 kcal or 1673600 J
So it has the same energy required for 8539 Benchpresses!
Power
Power = Energy/second. $\quad \mathrm{P}=\mathrm{E} / \mathrm{t}$
Units: $\quad 1$ watt = 1 J/s.
$\Rightarrow 100$ watt lightbulb means 100 Joules electrical energy/sec.
\Rightarrow Does that make sense? Why do we measure power of bulb instead
of energy?
\Rightarrow What do we pay the utility company for?

$100+$ W of heat per person by just sitting here!
No wonder lecture theatres, concert halls etc get hot and stuffy when
full!

How much useful power (work/second) can a human output over a 1 minute interval?
a. 5 W
b. 50 W
c. 500 W
d. 5000 W
e. $50,000 \mathrm{~W}$

How much of our food energy goes into useful work?

- How much force x distance can person do?
\Rightarrow Easy to measure with stationary bicycle.
- How much work does he do (expressed as Cal) during 10 hour ride? ($1 \mathrm{Cal}=4184 \mathrm{~J}$)
a. 2140 Cal, b. 1290 Cal, c. 150 Cal d. 12000 Cal

| Recap |
| :--- | :--- |
| Applied force is the same if book stationary |
| or moving up/down with constant velocity |
| ($\mathrm{F}_{\text {hand }}=$ weight $=\mathrm{mg}$) |
| What about the amount of work done by me? |
| Do I do more work (get tired more quickly) lifting book up and |
| down or just holding it up? |
| a. same, b. more work if lifting c. more work if holding it up |

Hard question - putting ideas so far together

I can only push with a force of 10 N , but I want to move a 3 kg mass up to a height of 0.5 m .
How steep a ramp should I make (keeping it as short as possible)?
a. can' t do it, takes 29.4 N to raise a 3 kg mass.
b. a 50% grade (1 m along ramp for 0.5 m up)
c. 1.5 m along ramp and 0.5 m up
d. 2 m along ramp and 0.5 m up
e. 2.5 m along ramp and 0.5 m up

New form of energy to think about. Motional or kinetic energy.

$$
K E=\frac{1}{2} \text { mass } x(\text { velocity })^{2}
$$

$$
K E=1 / 2 \mathrm{mv}^{2}
$$

Notice that this has the right units to be an energy:
$\mathrm{KE}=\mathrm{kg} \times \mathrm{m}^{2} / \mathrm{s}^{2}$
Energy $=\mathrm{N} \times \mathrm{m}$
$=\mathrm{kg} \times\left(\mathrm{m} / \mathrm{s}^{2}\right) \times \mathrm{m}$
$=\mathrm{kg} \times \mathrm{m}^{2} / \mathrm{s}^{2}$

$\mathrm{h}=15 \mathrm{~cm}$
What is the speed of the cart at the end of the tracks?
a. $0 \mathrm{~m} / \mathrm{s}$
b. $0.6 \mathrm{~m} / \mathrm{s}$
c. $1.7 \mathrm{~m} / \mathrm{s}$
d. $17 \mathrm{~m} / \mathrm{s}$
e. $170 \mathrm{~m} / \mathrm{s}$

