Energy: Part 3 - moving on to Fluids!

Can we apply notion of energy conservation to lift a plane? (even if the seats are loose)

Reminders:
Lecture 11:

- Kectur

Water distribution
Next week new materials

Summary

- Energy and work so far:
- GPE
- Work done by friction (\Rightarrow heat)
- Work done by applied forces (by me) $\mathrm{W}_{\text {ext }}-\left|\mathrm{W}_{\text {friction }}\right|=\Delta \mathrm{PE}+\Delta \mathrm{KE}$
- Power
- This time
- Kinetic energy
- Water distribution (energy of running water)

Register to vote:
http://www.sos.state.co.us/pubs/elections/vote/VoterHome.html

Online discussion forum for questions?

How do their speeds compare at the end?
c. 1 is going the same speed as 2
$\Delta \mathrm{PE}+\Delta \mathrm{KE}=0$
$\mathrm{PE}+\mathrm{KE}=$ Constant
No ext. work, No friction: Mechanical energy (KE+PE) of cart is conserved
$\Delta \mathrm{KE}=-\Delta \mathrm{PE}:$
KE gained = GPE lost
$1 / 2 \mathrm{mv}^{2}=\mathrm{mgh}$
$v^{2}=2 g h$
$v=\operatorname{sqrt}(2 g h)$

- v and h are directly related at all points along track
- Mass cancels out. v determined by height lost only

Push a 0.5 kg cart up 0.10 m .
How much gravitational potential energy (GPE) does it gain?
Answer: GPE $=\mathrm{mg} x$ change in height h ,
$=0.5 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \times 0.1 \mathrm{~m}=0.49 \mathrm{~J}(=0.5 \mathrm{~J})$

If we let it roll back down, how fast will it be going when it is back to where it started from?
a. $9.8 \mathrm{~m} / \mathrm{s}$, b. $1.4 \mathrm{~m} / \mathrm{s}, \mathrm{c} .2 \mathrm{~m} / \mathrm{s}$, d. $1 \mathrm{~m} / \mathrm{s}$, e. $0.2 \mathrm{~m} / \mathrm{s}$

Push a 0.5 kg cart up 0.10 m .
How much gravitational potential energy (G.P.E.) does it gain?
Answer: GPE $=m g x$ change in height h,

$$
=0.5 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2 \times .1 \mathrm{~m}=0.49 \mathrm{~J}(=0.5 \mathrm{~J})
$$

If we let it roll back down, how fast will it be going when it is back to where it started from?
a. $9.8 \mathrm{~m} / \mathrm{s}$, b. $1.4 \mathrm{~m} / \mathrm{s}, \mathrm{c} .2 \mathrm{~m} / \mathrm{s}$, d. $1 \mathrm{~m} / \mathrm{s}$, e. $0.2 \mathrm{~m} / \mathrm{s}$

W ext $-\left|W_{\text {trysion }}\right|=\Delta P E+\Delta K E$

KE gained $=$ GPE lost $1 / 2 m v^{2}=m g h$ $v^{2}=2 g h$ $v=\operatorname{sqrt}((2)(9.8)(0.1))=1.4 \mathrm{~m} / \mathrm{s}$

Or
$1 / 2 m v^{2}=0.5 \mathrm{~J}$ $\mathrm{v}^{2}=0.5 \mathrm{~J} \times 2 / 0.5 \mathrm{~kg}$ $\mathrm{v}=\operatorname{sqrt}(2)=1.4 \mathrm{~m} / \mathrm{s}$

Push the 1 kg cart up 0.10 m . How fast will it be going after it rolls back down?
a. same as the 0.5 kg cart, b. twice as fast, c. $1 / 2$ as fast
d. $\operatorname{sqrt}(2) \mathrm{x}$ faster, \quad e. $\operatorname{sqrt}(1 / 2)$ slower.

Push the 1 kg cart up 0.10 m . How fast will it be going after it rolls back down?
a. same as the 0.5 kg cart, b. twice as fast, c. $1 / 2$ as fast
d. sqrt(2) x faster, e. $\operatorname{sqrt(1/2)~slower.~}$

KE gained = GPE lost
$1 / 2 m v^{2}=m g(h)$
$\mathrm{v}=\mathrm{sqrt}(2 \mathrm{gh})$
Mass cancels out $\Rightarrow \mathrm{v}$ does not depend on m
Lets check!

Conservation of energy questions	
Push a 1 kg cart up 0.10 m .	
How much gravitational potential energy gain? (Recall : the 0.5 kg cart gained 0.5 J)	
GPE $=\mathrm{mgh}$, so 1 J	0.1 m
Push the 1 kg cart up 0.10 m . How fast will it be going after it rolls back down?	
a. same as the 0.5 kg cart,	
This experiment should ring bells.......we have looked at it before from point of view of forces and acceleration	
- Net force part of force of gravity $=$ Fraction $\times \mathrm{mg}$ - $\mathrm{F}_{\text {net }}=\mathrm{ma} \Rightarrow$ Fraction $\times \mathrm{mg}=\mathrm{ma}$ $a=$ fraction $\times \mathrm{g}$.	
When net force due to gravity, acceleration and hence mass	dent of

How high do balls go if you toss them?

Consider 2 balls of different sizes, different masses tossed up with same initial velocity.
Compare the maximum heights that they reach:
a) Heavier ball goes higher
b) Same height
c) Lighter ball goes higher

Energy conservation tells us they will go to same height.
$h=v_{0}{ }^{2} / 2 g$
Connection to stuff we already know:
You could have figured this out by considering the force of gravity and acceleration, velocity, and position as function of time (but C of E method produces much easier math).

Conservation of energy summary

- Often your best route for answering mechanics problems (especially when time is not involved)

$$
W_{\text {ext }}-\left|W_{\text {friction }}\right|=\Delta \mathrm{PE}+\Delta \mathrm{KE}
$$

- Conservation of energy has been checked in thousands of experiments.
- This principle always works.
- There is no such thing as energy for free, or a perpetual motion machine!

When tackling a new situation/problem to get a solution or to make a prediction about behavior, usually the first thing a physicist does is figure out the different forms of energy, how much there is of each, and how it is being converted between various forms.

Where does the water flow?
What determines the water pressure in different homes/heights? How fast does water flow out of a faucet?
How do you pump water out of wells?
ALL ABOUT CONSERVATION OF ENERGY!
$G P E=m g h \quad K E=1 / 2 m v^{2} \quad P P E=P V$
Pumps do work (Force x distance)
(all of the physics of water distribution system)
The super soaker (e.g. squirt guns)

Pump up the pressure inside just a little bit and squirt. If we pump it up more, the water coming out will be:
a. going slower than before, b. going the same speed,
c. going faster.

- Think conservation of energy.
- Pumping does work, energy in arm \rightarrow stored (potential) energy in SS
- When press trigger, PPE \rightarrow KE of water
- Test: Shoot water up.

Just like tossing a ball up, faster water goes higher.
\quad Pressure potential energy (PPE)
What the heck is pressure anyway?
Pressure $=\frac{\text { Force }}{\text { Area }}$
Units: 1 Pascal (Pa) $=1 \mathrm{~N} / \mathrm{m}^{2}$
The plunger of a syringe has an area of $1 \mathrm{~cm}^{2}$.
I push the plunger with a force of 5 N .
What' s the pressure exerted by the plunger on
the fluid inside?
a) $5 \mathrm{~N} / \mathrm{m}$
b) $5 \mathrm{~N} / \mathrm{m}^{2}$
c) $500 \mathrm{~N} / \mathrm{m}^{2}$
d) $50,000 \mathrm{~N} / \mathrm{m}^{2}$
e) $50,000 \mathrm{~N} / \mathrm{m}^{2}$
Pressure potential energy (PPE)
What the heck is pressure anyway?
Pressure $=\frac{\text { Force }}{\text { Area }}$
Units: 1 Pascal (Pa) $=1 \mathrm{~N} / \mathrm{m}^{2}$
The plunger of a syringe has an area of $1 \mathrm{~cm}^{2}$.
I push the plunger with a force of 5 N .
What's the pressure exerted by the plunger on
the fluid inside?

a) $5 \mathrm{~N} / \mathrm{m}^{2} \quad$
b) $5 \mathrm{~N} / \mathrm{m}^{2}$
c) $500 \mathrm{~N} / \mathrm{m}^{2}$
d) $50,000 \mathrm{~N} / \mathrm{m}^{2} \quad$ Pressure $=\mathrm{F} / \mathrm{A}=5 \mathrm{~N} /((0.01)(0.01)) \mathrm{m}^{2}=50000 \mathrm{~N} / \mathrm{m}^{2}$
e) $50,000 \mathrm{~N} / \mathrm{m}^{2}$
$=50000 \mathrm{~Pa}$

Pressure potential energy (PPE)

- New form of potential energy for fluids
- PE is the energy of an object (or fluid) due to its CONDITION (situation, surroundings etc)
- Water of mass m, at height h has associated GPE $=m g h$ because of its (vertical) position
- work (mgh) was done to get the water from ground to that height
- Physical details of how the work was done or how water is being supported is not important
- Water of volume V at pressure P has associated PPE = PV
- Work (PV) was done to pressurize the water
- Physical details of how the work was done or how the pressure is being maintained are not important
- Check that PV has units of energy (J)

$$
P V=\frac{\mathrm{N}}{\mathrm{~m}^{2}} \times \mathrm{m}^{3}=\mathrm{Nm}=\mathrm{J}
$$

Energy in a water distribution system

- The same three forms of energy exist in a water distribution system
- If we add up energy in these forms, the sum must be constant.
- It just sloshes back and forth between forms!

Since $E_{\text {total }}$ is constant:

- If one form of E changes, the other quantities must change correspondingly - If pressure changes (water comes out of nozzle), v changes.
- If height changes (go up in building), pressure or v changes, etc.
- Like the cart coasting up and down hills with no friction. Velocity and height are always connected - If you know velocity and height at one place, can calculate it at all others.

Bernoulli's Equation

$P V+1 / 2 m v^{2}+m g h=E_{\text {total }}$

But what mass of water are we talking about, what height?

Consider one little bit of water of volume V and mass m :
Replace $m=\rho V$ where ρ is the fluid density
($\rho=$ mass/volume
$=1000 \mathrm{~kg} / \mathrm{m}^{3}$ for water)

$$
P V+1 / 2 \rho V v^{2}+\rho V g h=E_{\text {total }}
$$

We can divide through by V to get the standard form for Bernoulli' s equation:

$$
P+1 / 2 \rho v^{2}+\rho g h=E_{\text {total }} / V \quad\left(E_{\text {total per unit volume }}\right)
$$

Just good old conservation of energy with the terms relabeled
Since $E_{\text {total per vol }}$ is constant:
Know P, v and h at one point \Rightarrow can calculate these quantities at another

