

Finish Bernoulli's Equation

$P V+1 / 2 m v^{2}+m g h=E_{\text {total }}$

Consider one little bit of water of volume V and mass m :
Replace $m=\rho \vee$ where ρ is the fluid density ($\rho=$ mass/volume
$=1000 \mathrm{~kg} / \mathrm{m}^{3}$ for water)

$$
P+1 / 2 \rho v^{2}+\rho g h=E_{\text {total }} / V \quad\left(E_{\text {total per unit volume }}\right)
$$

$\mathrm{E}_{\text {total per vol }}$ is constant:
Know P, v and h at one point \Rightarrow can calculate these quantities at another

Here I have a tank of water with a hose connected to the bottom. When I take my finger off the hose, water (under pressure) will squirt into the air. Will the water go higher or lower than the opening in the tank (dashed line)?

a. Higher
b. Right exactly to the dashed line
c. Lower
d. Impossible to predict
e. None of the above.
Here I have a tank of water with a hose connected to the bottom.
When I take my finger off the hose, water (under pressure) will squirt
into the air. I can hold the hose high (at A) or low (at B). From which
location will the water squirt higher (relative to the ground)?

Here I have a tank of water with a hose connected to the bottom. When I take my finger off the hose, water (under pressure) will squirt into the air. Will the water go higher or lower than the opening in the tank (dashed line)?

a. Higher
b. Right exactly to the dashed line c. Lower
d. Impossible to predict
e. None of the above

Think conservation of total energy per volume
At top of tank: $\mathrm{E}_{\mathrm{tpv}}=\rho \mathrm{gh}_{2}$
Water squirts out of hose and reaches highest point of flight:
$\mathrm{P}=0, \mathrm{v}=0$, height $=\mathrm{h}_{\text {top }}$
$\mathrm{E}_{\mathrm{tpv}}=\rho \mathrm{gh}_{\mathrm{top}}$
$\mathrm{E}_{\mathrm{tpv}}$ the same everywhere
$\Rightarrow \mathrm{h}_{2}=\mathrm{h}_{\text {top }}$

Here I have a tank of water with a hose connected to the bottom.
When I take my finger off the hose, water (under pressure) will squirt into the air. I can hold the hose high (at A) or low (at B). From which location will the water squirt higher (relative to the ground)?
a. A, the higher location

b. B, the lower location
c. Water reaches the same max. height
from both locations
d. Impossible to predict
e. None of the above.

B From previous question: $\mathrm{E}_{\mathrm{tpv}}=\rho \mathrm{gh}_{2}$
At top of flight (after leaving hose) $\mathrm{E}_{\text {tpv }}=\rho \mathrm{gh}_{\text {top }}$ (all GPE) $\Rightarrow h_{2}=h_{\text {top }}$

The height of the hose end doesn' t come into it
At A, water leaves hose slower, but starts higher At B, water leaves hose faster, but starts lower \Rightarrow Reach same max height
(Note: Friction may reduce $h_{\text {top }}$ slightly below h_{2})

Where does the shower work best?

In the house below, water pressure on the1 $1^{\text {st }}$ floor is 30 psi . What is the velocity of water coming out of the shower on the 1st floor?

	E	a. $2 \mathrm{~m} / \mathrm{s}$, b. $\quad 5 \mathrm{~m} / \mathrm{s}$,	
		c.	$20 \mathrm{~m} / \mathrm{s}$,
$\mathrm{P}_{\text {pipe }}=30 \mathrm{psi}$		d.	$100 \mathrm{~m} / \mathrm{s}$,
	7	e.	$414 \mathrm{~m} / \mathrm{s}$

$$
\mathrm{P}+1 / 2 \rho \mathrm{v}^{2}+\rho \mathrm{gh}=\mathrm{E}_{\mathrm{tpv}}
$$

Does h change on first floor?
$\mathrm{E}_{\mathrm{tpv} \text { INSIDE }}=\mathrm{E}_{\mathrm{tpv} \text { OUTSIDE }}$ ignore v inside pipe.

P (inside shower) $=1 / 2 \rho \mathrm{v}^{2}$ $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$

Where does the shower work best?
In the house below, water pressure on the1 ${ }^{\text {st }}$ floor is 30 psi . What is the velocity of water coming out of the shower on the 1st floor?

$\begin{aligned} & P_{\text {pipe }}=30 \mathrm{psi} \\ & (200,000 \mathrm{~Pa}) \end{aligned}$		a. $2 \mathrm{~m} / \mathrm{s}$, b. $\quad 5 \mathrm{~m} / \mathrm{s}$, c. $20 \mathrm{~m} / \mathrm{s}$, d. $100 \mathrm{~m} / \mathrm{s}$, e. $414 \mathrm{~m} / \mathrm{s}$ $P+1 / 2 \rho v^{2}+\rho g h=E_{t p v}$
		$\begin{aligned} & \text { Inside pipe: } P=P_{\text {pipe, }} v \approx 0 \text {, set } h=0 \\ & \quad \Rightarrow E_{\text {tpv }}=P_{\text {pipe }} \end{aligned}$
		Just outside showerhead: $P=0, h=0, v=v_{\text {shower }}$ $\Rightarrow E_{\text {tpv }}=1 / 2 \rho v_{\text {shower }}{ }^{2}$
		$P_{\text {pipe }}=1 / 2 \rho v_{\text {shower }}{ }^{2}$
		$\mathrm{v}_{\text {shower }}=\operatorname{sqrt}\left(2 \mathrm{P}_{\text {pipe }} / \rho\right)$
		$=\operatorname{sqrt}(2 \times 200,000 / 1000)$
		$=20 \mathrm{~m} / \mathrm{s}$

Where does the shower work best?

Now in this same house, the $3^{\text {rd }}$ floor shower is 10 m higher. What's the velocity of water at the $3^{\text {rd }}$ floor shower?

$$
\begin{aligned}
& \text { Inside pipe on first floor: } \mathrm{P}=\mathrm{P}_{\text {pipe, }}, \mathrm{V} \approx 0 \text {, set } \mathrm{h}=0 \\
& \Rightarrow \mathrm{E}_{\mathrm{tpv}}=\mathrm{P}_{\mathrm{pipe}} \\
& \text { Just outside showerhead on } 3^{\text {rd }} \text { floor: } \mathrm{P}=0, \mathrm{~h}=\mathrm{h}_{3}=10 \mathrm{~m}, \mathrm{v}=\mathrm{v}_{\text {showe }} \\
& \Rightarrow \mathrm{E}_{\mathrm{tpv}}=1 / 2 \rho \mathrm{v}_{\text {shower }}^{2}+\rho \mathrm{gh}_{3} \\
& P_{\text {pipe }}=1 / 2 \rho v_{\text {shower }}{ }^{2}+\rho \mathrm{gh}_{3} \\
& 1 / 2 \rho v_{\text {shower }}{ }^{2}=P_{\text {pipe }}-\rho g h_{3} \\
& v_{\text {shower }}=\operatorname{sqrt}\left(2\left(\mathrm{P}_{\text {pipe }}-\rho \mathrm{gh}_{3}\right) / \rho\right) \\
& =\operatorname{sqrt}\left(2\left(200000-1000 * 9.8^{*} 10\right) / 1000\right)=14 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

b. suck less from floor
 Fd also $=$ pressure $(\mathrm{F} /$ area $) \mathrm{x}$ volume (area x height) . So, bigger pressure needed.

LIKE RAMP, more distance up needs more work.
How can you figure this out using Bernoulli's equation?

Straw height and Bernoulli's Eqn. (Go through on own)

$P+\rho g h=E_{\text {tpv }} \quad(K E$ term $\sim 0 \quad v$ is close to 0$)$
How to apply this to figure out what pressure is needed to suck fluid up straw?
Bottom of straw: $\mathrm{P}=1 \mathrm{~atm}, \mathrm{~h}=0$ (define)
$\mathrm{E}_{\text {tpv }}=1 \mathrm{~atm}(100,000 \mathrm{~Pa})$
Top of straw: $\mathrm{P}=1 \mathrm{~atm}-\Delta \mathrm{P}_{\text {suck }}, \mathrm{h}=\mathrm{h}_{\text {mouth }}$
$\mathrm{E}_{\text {tpv }}=\left(1 \mathrm{~atm}-\Delta \mathrm{P}_{\text {suck }}\right)+\rho \mathrm{g}\left(\mathrm{h}_{\text {mouth }}\right)$
$\Rightarrow 1 \mathrm{~atm}=\left(1 \mathrm{~atm}-\Delta \mathrm{P}_{\text {suck }}\right)+\rho g\left(\mathrm{~h}_{\text {mouth }}\right)$
$\Rightarrow \Delta P_{\text {suck }}=\rho g h_{\text {mouth }}$
\Rightarrow The higher you stand the harder it is to suck fluid up the straw

Notice how $\mathrm{P}=1 \mathrm{~atm}$ canceled from both sides. Always does so it's
Notice how $\mathrm{P}=1$ a
easiest to always just use P as difference from 1 atmosphere
i.e. set zero of pressure at 1 atm

Nuclear Weapons...

- There will be a "reading quiz" on Thurs
- Keep to the schedule on the web:
- HW This week

Bernoulli's Equation in Real Life

Total Energy per volume $=P+\frac{1}{2} \rho v^{2}+\rho g h$

- This is a good approximation but it cannot be perfectly correct -What type of energy does it ignore?
\Rightarrow Think about a narrow pipe.

- Does not consider energy going into thermal energy- from friction with walls etc.
- For example, for high speed flow in a narrow pipe, more water molecules bounce off walls, creating significant friction and energy loss as heat
- But for most water distribution systems, friction can be ignored Bernoulli works very well.
Nuclear Weapons*
release of ENORMOUS amounts of energy stored
in the nuclei at center of atoms.
I. "Atomic" bomb (actually "fission" bomb) today
a. how nuclei are held together, why so much energy involved.
b. how they come apart and release LOTS of energy.
a/pha decay, neutron-induced fission
c. how to make a whole bunch of them do it at once
= LOTS \times whole bunch= bomb
II. Radioactivity- what is it and why bad for living cells.
half-life
III. Fusion bomb (little nuclei stick together).

Each element has different number of protons.
Atom ingredients: ${ }^{\circ}$ Proton (positive charge) - charge $=1.6 \times 10^{-19}$ Coulombs
mass $=1.66 \times 10^{-27} \mathrm{~kg}$.

- Neutron (no charge) - no charge

Oxygen has 8 protons, 8 neutrons:
Consider a nuclei with 7 protons, 7 neutrons (nitrogen atom)... what if we want to
add another proton to make oxygen (8 protons):
What will we need to do to get proton stuck to nucleus:
a. just give it a little push so it will hit nucleus dead on and it will drift
towards nucleus and stick.
b. the closer it gets, the harder you have to push, will take lots of work
c. you'll need to push really hard at first and then less as you get closer
d. you'll have to push the proton towards the nucleus with a fixed amount
of force (constant force).

What if threw proton so starts out going towards nitrogen nucleus with a
lot of speed (lots of kinetic energy)?
Starts with lots of kinetic energy \rightarrow
Repelling force from nucleus slows down proton \rightarrow.
Proton's kinetic energy converted into electrostatic potential energy,
as it gets closer to nucleus
Potential energy curves-
represent energy to bring
particles together.

Gravity energy analogy.
if at center, want to roll down hill/fly apart ... lots of electrostatic potential energy

Potential energy curves- represent energy to bring particles together. Gravity energy analogy. Potential energy $=\underline{k x}$ charge of 7 proton nucl. x charge of single proton at separation (separation distance) distance of r Charge of 1 proton $=1.6 \times 10^{-19}$ Coulombs; Charge of 7 protons $=11.2 \times 10^{-19} \mathrm{C}$ So at $10^{-15} \mathrm{~m}$ away (\sim radius of nucleus), Potential energy $=\frac{8.99 \times 10^{9}}{} \frac{\mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}^{2}}{\left(10^{-15}\right.} \frac{11.2 \times 10^{-19}}{\mathrm{~m})} \mathrm{C} \times 1.6 \times 10^{-19} \mathrm{C}$ $=1.61 \times 10^{-12}$ Joules $=10$ million electron Volts. (1 electron volt = energy gained by electron moving through 1 Volt diff. $=1.6 \times 10^{-19} \mathrm{~J}$)

Potential energy curve (Energy vs. separation distance)
for bringing electron in to proton
a. This curve would be flat, not going up or down
b. look like bringing a proton into a proton except upside down so going
down instead of up.
c. would look same as proton on proton
potential energy curve for bringing electron in to proton
b. look like proton on proton except upside down so going down.

Electron and proton get pulled together,
curve tells us that must add energy to separate electron and proton. electron wants to roll into center as close as possible.

What about a neutron? No electrostatic repulsion! 30

Nuclear decay- one kind of nucleus changes into another.
alpha decay, (beta decay), induced fission
A. alpha decay- alpha particle $=2 \mathrm{p}$ and 2 n . They escape together. Most radioactivity is this type (e.g. radon).
"tunnel" out.
Not real tunnel.
Quantum physics says jumping around all the time. Very small fraction of time appear outside-
when happens-- run for it!!
2protons-2neutrons stuck together.
(chained together prisoners escaping!)
Energy scale gigantic compared to chemical energy.
Why? Simple coulomb's law.
$\mathrm{F}=\mathrm{k}$ (charge of \#1)(charge of \#2)
Chemistry-forces between electrons and protons on distance scale of atomic size (> $10^{-10} \mathrm{~m}$).

Nuclear forces- forces between protons on distance scale 10-100,000 times smaller. 10,000 times closer means forces $100,000,000$ times bigger because of $1 / \mathrm{r}^{2}$. Lots more potential energy stored!!! 33

