Light bulbs

Lecture 17 :
Incandescent light bulbs
How they work
Why they are inefficient

Reminders:
No HW was due yesterday HW for next week, posted soon Reading quiz Thurs

Lightbulbs

How many scientists does it take to change a lightbulb?
Undergraduates:
None "Bright light - hurts... must go back to bed".
Postgraduates:
Funding for a new lightbulb ran out six months ago - will have to borrow
from their parents
Seven. One to change the bulb, six to design t-shirts and new gadgets
Russian military scientists:
Russian milita
It's top secret.
It's top secret.
One to install the bulb and six to figure out what to do with the old bulb for the next ten thousand years

Lecture 17:
Incandescent lightbulbs
How they work
Why they are inefficient

End of semester grade policy

At end of semester I will:

- Drop your lowest midterm score, lowest HW, 2 classes.
- Add up all points possible during class to get final score and $\%$
- Based on that $\%$, you are guaranteed the following grade:
$>90 \%=\mathrm{A}$
$>80 \%=$ B
$>70 \%=\mathrm{C}$
$>70 \%=\mathrm{C}$
$>60 \%=\mathrm{D}$
$>60 \%=\mathrm{D}$
$<50 \%=\mathrm{F}$
I reserve the right to make this scale (curve) more generous/inclusive.

Hope to have your mid-term scores posted this week or next.

How does a light bulb work?

How does an incandescent light bulb work:

- Electric current flows through filament
- Filament gets hot
- Hot filament emits EM radiation
- Electrical energy \rightarrow EM radiation energy

What can we see coming out of a light bulb?
We can see white(ish) light:

- Visible light is one type of electromagnetic radiation
- Form of energy
- Consists of many different colors - what's a color?

Electromagnetic waves can have any wavelength Scientific notation is usefu!

Wavelength

For periodic waves, we can identify a wave length, λ, by measuring the distance between unique points

How Big is that wave of light?

- The wavelength of green - How many A's in a B light is around 500 nm . How many wavelengths of green light fit into one cm (0.4 inches, or a
fingertip)?
a) 20 thousand
b) 50 thousand
c) Two million
d) Two billion
e) 5 billion (e.g. quarters in a dollar!) Number $=\mathrm{B} / \mathrm{A}$
- wavelength $=$ $500 \mathrm{~nm}=$ $5 \times 10^{2} \times 10^{-9} \mathrm{~m}=$ $5 \times 10^{-7} \mathrm{~m}$
- 1 cm is $1 / 100$ of a meter and $10^{-2} \mathrm{~m}$
- Therefore, we obtain $10^{-2} \mathrm{~m} / 5 \times 10^{-7} \mathrm{~m}=2 \times 10^{4}$
- There are $20,000 \quad \mathrm{~N}=\mathrm{B} / \mathrm{A}$ wavelengths in a cm

Period and Frequency
For periodic waves, we can identify a period, T, by measuring
the time taken for a wavelength λ to pass a given point -

Practice with E/M Waves

An FM radio station transmits at a frequency of: $f=100 \mathrm{MHz}=10^{8} \mathrm{~Hz}$ (note: $\mathrm{Hz}=1 / \mathrm{s}$) then the wavelength is :
$\begin{array}{llll}\text { A) } 1 \mathrm{~m} & \text { B) } 0.3 \mathrm{~m} & \text { C) } 3 \mathrm{~m} & \text { D) } 100 \mathrm{~m}\end{array}$
E) None of these.
$c=\lambda f$
$\mathrm{f}=\mathrm{c} / \lambda$
$\lambda=c / f$
$\lambda=\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(10^{8} 1 / \mathrm{s}\right)=3 \mathrm{~m}$

Clicker Question

Your microwave oven operates at a frequency of: $\mathrm{f}=3 \mathrm{GHz}=3 \times 10^{9} \mathrm{~Hz}$ (note: $\mathrm{Hz}=1 / \mathrm{s}$) then the wavelength is :
$\begin{array}{llll}\text { A) } 1 \mathrm{~cm} & \text { B) } 0.3 \mathrm{~cm} & \text { C) } 3 \mathrm{~cm}\end{array}$
D) 30 cm
E) None of these.
$\mathrm{c}=\lambda \mathrm{f}$
$\lambda=\left[3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right] /\left[3 \times 10^{9} 1 / \mathrm{s}\right]$
$\mathrm{f}=\mathrm{c} / \lambda$
$\lambda=0.1 \mathrm{~m}$ Or 10 cm
$\lambda=c / f$

- Electric field exists everywhere in space
- Describes the force on a charged particle at each point in space
- Vector - has a magnitude and direction
- Units: Newtons/Coulomb
- Contains energy
- Created by charges (and created in other ways)
- Analogy: Like gravitational field describes the force on a particle with mass - Balloon demo

Electromagnetic radiation

- EM radiation also travels in waves, like sound
- But light can travel through a vacuum so what exactly is 'waving'?
- EM radiation is a periodic modulation of "electric field"

Electric field

- Color of light depends on its wavelength.

We see color when waves of different wavelengths enter enter our eyes!

- Which of the light waves has the longest wavelength?
- Which of the light waves is brightest?
- Which of the light waves has the highest speed in empty space?
a) b) c)
(e) They all have the same speed

Clicker questions

Speed of light \& Distances

Can use Speed of light to measure distances (if we track time)

What Equation do we use?

$$
\mathrm{d}=\mathrm{r} * \mathrm{t}
$$

If it takes 5 seconds for light to travel from here to a spaceship, How far is the spaceship ?

Work it out!

Dist $=$ rate \times time $\quad=\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)(5 \mathrm{~s})$ $=15 \times 10^{8} \mathrm{~m}$
$\begin{array}{ll}=1.5 \times 10^{9} \mathrm{~m} & \\ =1.3 \times 10^{5} \text { miles, } \\ =1.5 \times 10^{6} \mathrm{~km} & \\ \text { or } 930,000 \text { miles }\end{array}$
\qquad

Properties of light

1. Light travels in vacuum.

Sound travels in air (no sound in vacuum).
2. Light carries energy. (Sunlight warms, generates electricity.)
3. Light moves with a particular speed in vacuum,
4. Light travels in vacuum in straight lines (rays).
5. Light has amplitude (intensity).

Electromagnetic radiation

Light travels in waves, like sound
Speed of light, in vacuum $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Frequency of red light $=4.6 \times 10^{14} \mathrm{~Hz}$

Wavelength of red light $=$
$c=\lambda f$
a) 0.75 m
$\mathrm{f}=\mathrm{c} / \lambda$
b) $7.5 \times 10^{-5} \mathrm{~m}$
c) $6.5 \times 10^{-7} \mathrm{~m}$
d) $1.38 \times 10^{23} \mathrm{~m}$
$\lambda=c / f$

Electromagnetic radiation

Light travels in waves, like sound

$\begin{aligned} & c=\lambda f \\ & f=c / \lambda \end{aligned}$	Speed of light, in vacuum $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\lambda=\mathrm{c} / \mathrm{f}$	Frequency of red light $=4.6 \times 10^{14} \mathrm{~Hz}$
Answer: $\begin{aligned} \lambda & =\mathrm{c} / \mathrm{f} \\ & =\left(3 \times 10^{8}\right) /\left(4.6 \times 10^{14}\right) \\ & =6.5 \times 10^{-7} \mathrm{~m} \\ & =650 \mathrm{~nm} \end{aligned}$	Wavelength of red light $=$ a) 0.75 m b) $7.5 \times 10^{-5} \mathrm{~m}$ c) $6.5 \times 10^{-7} \mathrm{~m}$ d) $1.38 \times 10^{23} \mathrm{~m}$

$\left(1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m}\right)$

Blackbody spectrum and temperature

Look at light bulb with variac to control how much electrical power goes into it.

If I put half as much electrical power into it, what will happen?
a. color will change, get whiter, brightness decrease
b. color will stay the same, brightness decrease
c. color will get redder, brightness decrease
d. color will get redder, brightness the same
e. color will get whiter, brightness the same.

Blackbody spectrum

- Everything that has a non-zero temperature emits EM radiation
-The spectrum of EM radiation coming from a black object is called the
"blackbody spectrum."
- Go to the
- BB spectrum determined by temperature only.
-The temperature of the object affects both
- The total power of EM radiation emitted by the object
- The range of wavelengths emitted (the spectrum)

Blackbody spectrum and temperature
Look at light bulb with variac to control how much electrical power goes
into it.
If I put half as much electrical power into it, what will happen?
a. color will change, get whiter, brightness decrease
b. color will stay the same, brightness decrease
c. color will get redder, brightness decrease
d. color will get redder, brightness the same
e. color will get whiter, brightness the same.

