

All information on course website:
http://www.colorado.edu/physics/phys1010/phys1010 fa12/

Office Hours \& Problem Solving Sessions

Thursdays 2-5pm (today) $==$ I"ll be there 2-2:30 today
Mondays $3-5 \mathrm{pm}$
--- NEXT WEEK ONLY: Tues 3-5p \& HW Due Tues Midnight

In Physics Helproom (G2B90)

- Enter building opposite Buffalo

Down stairs to basement

- G2B90 across corridor,
- Ask anyone if lost

We want to help you! Let us know if these times are totally incompatible with your schedule

Homework too hard to do alone, but ok \& learn when working together.
We will help interactions, coach, NOT give answers.

Clicker start up

Switch clicker code to BA

- Wait for me to get laptop connected up
- Hold down ON/OFF switch for 4 seconds
- At flashing blue light hit BA
- Answer question
- You are set for the rest of class
- Do not turn off clicker for rest of class or you will have to repeat above for each question
Remember, you can change your mind, only final answer recorded

Course Goals

1. To have an interesting class that covers physics.
2. To begin to see science in everyday life,
3. To understand that the universe is predictable rather than incomprehensible.
4. To see that science (particularly physics) is based on quantitative experiments.
5. To practice using logic, data, and analysis in order to solve problems.

Note: this is not an exercise in mathematics...
We will use math, but only as a tool for understanding ideas / the world --- basic mathematics...

A math example

- You go into a store and can buy a tennis racket and balls for $\$ 110$. The clerk tells you that the racket costs $\$ 100$ more than the balls.
- How much do the tennis balls cost?
- How much do the tennis balls cost?
a) $\$ 110$
b) $\$ 100$
c) $\$ 10$
d) $\$ 5$
e) 0

2 ways to solve: both good!

You go into a store and can buy a tennis racket and balls for $\$ 110$. The clerk tells you that the racket costs $\$ 100$ more than the balls.
Mathy:
balls + racket $=\$ 110$
racket $=$ balls $+\$ 100$
put second eq'n into first
balls $+($ balls $+\$ 100)=\$ 110$
$2 \times$ balls $=\$ 10$
balls $=\$ 5$

2 ways to solve: both good!

Reasoning:

if I guess $\$ 10$ for balls
racket $=\$ 100+$ balls $=\$ 100+\$ 10=\$ 110$
then balls + racket $=\$ 10+\$ 110=\$ 120$!
try balls = \$0
then balls \& racket = \$100!
try balls = \$5
ahhhhh haaa!!!!!

What is Physics?

Lots of answers:
A study of matter, energy and interactions A big part is how things move.
In this class:

- Objects (e.g., baseballs)
-Fluids (air, water)
-Heat
-Electricity (moving charges)
-Electromagnetic waves (radio)
-Light

How did you get to class today?
a) Walked
b) Rode a bike
c) Took the bus
d) Drove
e) Zip line

What do you need to know to describe the motion of an object?
A) where it is
B) where it's going
C) both where it is and where it's going.
D) where its been

What do you need to know to describe the motion of an object?
A) where it is
B) where it's going
C) both where it is and where it's going.
D) where its been

Where it is : Position
Where it is going : Velocity

So......what's the big difference between position and distance????
a) No difference - 2 words for the same thing
b) Position includes both distance AND direction
c) Distance includes both position AND direction
d) Position is just about a direction

Scalars and vectors

- Distance is a SCALAR quantity
- Fully described by one number e.g. 5m, 1 mile etc
- Just says how far you are from origin, but not exactly where
- Always positive
- Position is a VECTOR quantity
- Contains BOTH a number (distance) AND a direction
- Says how far you are from origin and in what direction - precisely describes your location
- Can be positive or negative (determined by direction)
- Often represented by an arrow
- Length represents magnitude of vector (distance)
- Point of arrow give direction.
- IMPORTANT CONCEPT: Many other VECTOR and SCALAR quantities to appear in this course!

Speed and velocity

- Speed is a scalar quantity
- Says how fast you are moving
- Physics units m/s
- Always positive

Speed and velocity

Velocity is a vector quantity

- Says how fast you are moving and in what direction
- Physics units m/s
- Can be positive or negative depending on direction
- Speed is the magnitude or size of the velocity
- Often represented by symbol 'v'

Velocity $(\underline{v})=\frac{\text { Change in position }(\underline{\Delta x})}{\text { Time taken }(\Delta \mathrm{t})}$
$=\underline{\text { Final position }\left(\underline{\mathrm{x}}_{\mathrm{f}}\right)-\operatorname{Initial} \text { position }\left(\underline{\mathrm{x}}_{\mathrm{i}}\right)}$
Time taken ($\Delta \mathrm{t}$)

Speed experiment: about how fast did the cart move? (pick the closest value)
a) $100 \mathrm{~m} / \mathrm{s}$
b) $10 \mathrm{~m} / \mathrm{s}$
c) $1 \mathrm{~m} / \mathrm{s}$
d) $0.1 \mathrm{~m} / \mathrm{s}$
e) $0 \mathrm{~m} / \mathrm{s}$
Hint: \quad speed $=\frac{\text { distance it traveled }}{\text { time it took }}$

What about velocity?

Speed experiment: about how fast did the cart move? (pick the closest value)
a) $100 \mathrm{~m} / \mathrm{s}$
b) $10 \mathrm{~m} / \mathrm{s}$
c) $1 \mathrm{~m} / \mathrm{s}$
d) $0.1 \mathrm{~m} / \mathrm{s}$
e) $0 \mathrm{~m} / \mathrm{s}$

Hint:
speed $=\frac{\text { distance it traveled }}{\text { time it took }}$

Velocity versus time graphs
Sketch velocity versus time graphs for:

Speed and velocity question

1. You are driving 60 miles per hour north.
2. You are driving 60 miles per hour.
a. both give your speed, can't tell your velocity. b. 2. gives speed, 1. gives velocity.
c. both are giving your velocity.
d. 2 gives velocity, 1. gives your speed.
