

Discussion of Energy

- 3 Types of energy (there are others):

Kinetic - energy of motion - rock rolling down hill
Potential - ability to do work in future - rock at the top of a hill
Thermal - energy that dissipates as heat (e.g. friction, or smashing into a wall)

- How would this apply to charges?
$\oplus \quad \Theta$
- Think of the analogy of a hill... pulling + away from valley...

Hill Analogy for energy

Is it easier or harder to separate opposite charges when they get further away from each other?

$$
\mathrm{F}=\mathrm{kq}_{1} \mathrm{q}_{2} / \mathrm{r}^{2}
$$

Mechanical work vs. Electrical

Think, climbing up a hill stores energy in system

Same thing, separating charges...

Voltage has to do with conditions of system

- Amount of charge
- Distance from that charge
- Like the electric force (related but different)

Voltage is like the height of mountain

- Think Topographical maps

Voltage is like the height of mountain

- Voltage
- Height (and gravity)
- Charge, q
- Mass, m
- Electrical Potential Energy
- Gravitational potential Energy
$E P E=q \Delta V$
GPE $=m g \Delta h$

Electrostatic potential energy and voltage
New force: Electrostatic force between charges
New PE: Electric Potential Energy (EPE)
Forces and PE go in pairs - Remember gravitational force:

- Do work against gravitational force (mg) to raise an object's GPE (mgh)
- Similarly, do work against electric force to raise an object's EPE
$E P E=q \Delta V$, where $q=$ charge of object and ΔV is voltage difference
Like GPE with $\mathrm{q} \leftrightarrow \mathrm{m}$ and $\Delta V \leftrightarrow \Delta \mathrm{~h}$
Voltage (V)
- tells you EPE of any charge at that location in space
- Tells you work required to bring a unit charge from $\mathrm{V}=0$ to that location
- Determined by surrounding charges

Closer you are to + charge the more + the voltage

- A grounded object is always at $\mathrm{V}=0$
- Usually most interested in $\Delta \mathrm{V}$: voltage difference between 2 locations Best understood by doing practice questions

Two metal plates connected by a battery.
Battery maintains a voltage difference of V between the plates

Plate A is grounded (set to zero V)
What is the voltage of plate B ?
a) 0
b) $+V$
c) $-V$
d) Can't determine from information given

What is the change in EPE of charge as it flies from plate B to plate A ?
a) 0
b) $+q V$
d) Can't determine

Conservation of energy:
$\mathrm{W}_{\text {ext }}-\left|\mathrm{W}_{\text {friction }}\right|=$
$\Delta G P E+\triangle E P E+\Delta K E$

Charged particle loses EPE as it flies from B to A.
What form has this energy turned into just before it hits plate A
a) KE
b) Thermal energy
c) GPE
d) PPE

A positive charge q is released from
position i to position f between the charged plates.

Did the electric potential energy (PE) increase or decrease?
ncrease or decrease?
Did the voltage (V) at the position of the +
test charge increase or decrease?
A: PE $\uparrow, V \uparrow \quad B: P E \uparrow, V \downarrow$
C: PE $\downarrow, V \uparrow$
D: PE \downarrow, V
E: None of these.

Electrostatics Summary

- Positive and negative charge: Like charges repel, opposites attract
- Coulombs law for point charges: $F=k q_{A} q_{B}$

Force acts along line joining particles

- Voltage: Determines EPE of charge at that location in space Close to + charges voltage is more + and vice versa Grounded object is at 0 V (Also called Electric Potential)
- $\mathrm{EPE}:=\mathrm{q} \Delta \mathrm{V}$

New form of potential energy Lots of analogies to GPE $(\Delta V \leftrightarrow \Delta h, q \leftrightarrow m)$

