

- Increase $R \Rightarrow$ More stuff to run into, average speed slower, fewer e- per time. $-\Delta V=I R \Rightarrow I=\Delta V_{\text {batt }} / R_{\text {bulb }}$

Electrical Power

What is the electrical power used up by each component in circuit? POWER tells us how HOT something gets or how BRIGHT a bulb is

\uparrow _ Voltage dropped across component

Current through component
Electrical power dissipated (used up) in component
Also Ohm's Law: $\Delta \mathrm{V}=\mathrm{IR}$
Substitute into power law to get different forms:
$P=I^{2} R$

- Useful if you know I and R but not V (series circuits)
$\mathbf{P}=\Delta \mathbf{V}^{2} / \mathbf{R}$
- Useful if you know V and R but not I (parallel circuits)
$P=I \Delta V$
- Useful if you know I and V but not R

Power question
I have a 60 W bulb plugged into the mains.
Assume that the mains supply is like a 120 V battery
What current flows through the bulb?
a) 120 A
b) 60 A
c) 0.5 A
d) 2 A
e) 7200 A

Power question

I have a 60 W bulb plugged into the mains.
Assume that the mains supply is like a 120 V battery
What current flows through the bulb? 0.5A
What is the resistance of the bulb filament? a) 240Ω

Method 1:

- Know P and ΔV, want R
- Use: $P=\Delta V^{2} / R$
$-R=\Delta V^{2} / P=120^{*} 120 / 60=240 \Omega$

Method 2:

- Know $\Delta \mathrm{V}$ and I (from previous question)
- Use $\Delta V=I R$
$-R=\Delta V / I=120 / 0.5=240 \Omega$
Often several ways to calculate circuit answers:
- Useful for checking your answers
- Practice enables to you choose quickest method

Batteries in series

A flashlight requires $2 \mathrm{AA}(1.5 \mathrm{~V})$ batteries, and is arranged as shown. The bulb.

A: has 1.5 V across it, \& glows
B: has 3 V across it, \& glows
C: has 3 V across it, \& is dark
D : has 0 V across it, \& is dark
E : has 0 V across it, \&glows

Batteries in series

Batteries provide a voltage difference between their terminals
If each battery below is an identical 3 V battery, what is the total voltage across the following arrangement?

- Tail to tail (or nose to nose) configuration of batteries not a good idea - Voltage differences cancel out
- Could cause explosion of a non-rechargeable battery
(current is being forced through $3^{\text {rd }}$ battery in the wrong direction)

First we have 1.5 V across a bulb
later we put 3 V across the SAME
bulb. What happened to the POWER
dissipated by the bulb?
A) Stayed the same
B) Doubled
C) Quadrupled
D) Not sure/something else

Batteries in parallel

Each battery can produce a given amount of the difference then?
current (electrons/ second) for a certain amount
of time

Note: rating on batteries is in Amp-Hours!
(what is an amp-hour?)
Zoinks.. With two batteries I have a
from.
Case 2: last twice as a long!

