

CLICKER Registration

You Must Register:

Last Name First Name
Anderson Bradley
Harriger Brittney
Gurel Charlotte
Flaherty Daniel
Charneskie Emma
Tovo Jacob
Swihart Johnathan
Ross Kathleen
Gabriel Michael
Williams_Jr. Ozell
Goldner Samuel
Sweet Samuel
Marzano Stefano
Thammavon, William
Behnam Yashar

Is this one of yours?
Unregistered i>clicker remotes: \#009269FB \#25C807EA \#36341416 \#OODC4995 \#2601BB9C \#36535633 \#0227183D \#265C750F \#368AD864 \#029925BE \#26652F6C \#36D28460 \#08FCBB4F \#26B4C153 \#36FA05C9 \#0D020609 \#26BFOE97 \#37095C62 \#OD3B7442 \#32D85BB1 \#371B7E52 \#0F7B2753 \#32DE779B \#372D1B01 \#18B82A8A \#331F2DO1 \#372E5049 \#19A167DF \#33438FFF \#372FF4EC \#1BFAB455 \#33B09A19 \#37302C2B \#1DE2A55A \#33EOOFDC \#3733282C \#25C2886F \#340984B9 \#37361A1B \#40206FOF

Improving class experiences:

1)ASSETT Survey on Videos/Tech in Class:.

Complete the survey by FRIDAY, DEC. 7th to enter your name in a drawing for a $\$ 100$ gift certificate to the CU
Complete the survey
Bookstore! Link:
) focus groups about usage of digital media.

) How do you feel about more video on PhET Simulation use in this class.
a) yes, I think these are important
b) yes it's fine
c) neutral
d) I would prefer not
e) really, please do not

Scores in Class
(to be posted on D2L this week)

Sound waves

Everyday Life Experience at the Ballpark:
You are at the ball park sitting in the bleachers in the outfield (~325 ft from the batter). You see the bat hit the ball. About how long will it take before you hear the bat hit the ball?
c. About 0.3 seconds

How fast is that sound traveling?
Speed $=$ distance $/$ time $=325 \mathrm{ft} / 0.3 \mathrm{~s}=1083 \mathrm{ft} / \mathrm{s}$ or $330 \mathrm{~m} / \mathrm{s}$

Speed of Sound in Air $=331 \mathrm{~m} / \mathrm{s}$ at 0 degree C
$343 \mathrm{~m} / \mathrm{s}$ at 20 degree C
(Speed of Light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \ldots$ much, much faster)
About 0.3 second means $\sim 325 \mathrm{ft}$ away from batter. In 0.03 seconds, travels $\boldsymbol{\sim} \mathbf{3 2 ~ f t ~ a n d ~ i n ~} 2 \mathbf{~ s e c}, ~ \sim 2,160 ~ f t ~{ }^{6}$

What causes the delay between seeing and hearing?

- Light (carrying sight information) and sound (carrying noises) travel in totally different ways and at totally different speeds from the event to your eyes/ears.
- Light is an electromagnetic wave
- It travels absurdly fast $-3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ or 670 million mph !
- Virtually no delay between bat hitting ball and you seeing it occur
- A sound wave involves the motion of air molecules
- It travels or propagates much more slowly $-330 \mathrm{~m} / \mathrm{s}$ or 740 mph
- Sound takes a noticeable amount of time to get from bat to your ear!

Sound Sim

What is air anyway?

a) There's nothing there - can you see anything?
b) Load of stationary atoms of all types
c) Primarily oxygen molecules fixed in a rigid matrix
d) Primarily nitrogen and oxygen molecules bouncing around and colliding with each other and anything else they bump into
e) There's something out there but its got nothing to do with atoms or molecules

- The molecules are constantly in random 3D motion ($\sim 1200 \mathrm{mph}$)
- In absence of sound wave they maintain uniform density
(randomly but evenly spaced)
\Rightarrow Uniform air pressure
- Useful visual picture of the stuff air is made of GO TO IDEAL GAS SIMULATION

What is sound?

When you hear the crack of the bat with your ear, what is it that your ear is detecting?
a. Electromagnetic radiation that was produced when the bat hit the ball
b. A small change in the pressure of the air that is the result of the bat hitting the ball
c. A wave that travels through the air from the bat to your ear.
d. a. and c.
e. b. and c.

What is air anyway?

a) There's nothing there - can you see anything?
b) Load of stationary atoms of all types
c) Primarily oxygen molecules fixed in a rigid matrix
d) Primarily nitrogen and oxygen molecules bouncing around and colliding with each other and anything else they bump into
e) There's something out there but its got nothing to do with atoms or molecules

What is sound?

When you hear the crack of the bat with your ear, what is it that your ear is detecting?
a. Electromagnetic radiation that was produced when the bat hit the ball.
b. A small change in the pressure of the air that is the result of the bat hitting the ball
c. A wave that travels through the air from the bat to your ear.
d. a. and c.
e. b. and c.

What produces the sound?

When bat hits ball, they push the surrounding air causing a slight increase in the pressure of the air followed by a slight decrease.

What is it that your ear is detecting?
This pressure fluctuation travels out in all directions as a wave, as air molecules push on the ones next to them and then they push on the ones next to them. As the pressure wave reaches your ear, you hear sound.

Wave Interference Sim.

http://phet.colorado.edu/en/simulation/wave-interference

Looking at a soundwave with a scope:

Microphone detects changes in pressure.
Intro to o-scope

Question: If I increase the volume, what will happen to the signal from the microphone?
a. The peaks will go up and the valleys will go down.
b. The peaks will get closer together.
c. The whole signal will go up.
d. Both a and b.
e. Nothing will happen

How to change the pitch (note) of the speaker?
To get a higher pitch sound, we need to adjust the speaker to:
a. vibrate back and forth more rapidly, taking a smaller amount of time for each cycle
b. vibrate back and forth at the same rate as before, but the range of it's back and forth motion is larger.
c. receive more power
d. vibrate back and forth more slowly, taking a longer amount of time for each cycle
e. vibrate back and forth at the same rate as before, but the range of it's back and forth motion is smaller.

What if we wanted to change the pitch of the tone produced by the speaker?

To get a higher pitch sound, we need to adjust the speaker so that:
a. It vibrates back and forth more rapidly, taking a smaller amount of time for each cycle
b. It vibrates back and forth at the same rate as before, but the range of it's back and forth motion is larger.
c. It receives more power
d. It vibrates back and forth more slowly, taking a longer amount of time for each cycle
e. It vibrates back and forth at the same rate as before, but the range of it's back and forth motion is smaller.

In physics/wave language this is called adjusting the frequency (f)

Frequency (f) of a sound wave

- Controls pitch of sound
- The number of times per second that the speaker goes through one complete pushing motion
- The number of times per second that the pressure in my ear goes through rise-fall cycle.
- Units: $\mathrm{Hz}\left(\mathrm{s}^{-1}\right) 1 \mathrm{~Hz}=1$ cycle per second

The frequency of Concert A is 440 Hz
Octave below Concert A

$(220 \mathrm{~Hz})$

middle C
$(256 \mathrm{~Hz})$

Concert A
$(440 \mathrm{~Hz})$

Octave above Concert A
$(880 \mathrm{~Hz})$

Range of Human Hearing : 20 Hz to $20,000 \mathrm{~Hz}$
Dogs : 40 Hz to $60,000 \mathrm{~Hz}$ Mice : 1000 Hz to $90,000 \mathrm{~Hz}$
Question: If the speaker oscillates at 200 Hz (remember that is completing
one cycle in 0.005 seconds), what is the wavelength (distance between the
pressure maximums)
Recall: the speed of sound $=330 \mathrm{~m} / \mathrm{s}$
b. 1.65 m c. $66,000 \mathrm{~m}$ d. 3.3 m
Question: If the speaker oscillates at 200 Hz (remember that is completing
one cycle in 0.005 seconds), what is the wavelength (distance between the
pressure maximums)
Recall: the speed of sound $=330 \mathrm{~m} / \mathrm{s}$
a. 0.6 m

If the speaker vibrates back and forth twice as fast (so 400 times
per second), then the period of the sound wave (the time between
producing each peak in pressure) is
a. twice as long \quad b. half as long b. Half as long. Period $(T)=1 / f=1 / 400 \mathrm{~Hz}=0.0025 \mathrm{~s}$ What happens to the wavelength of the sound wave when we double f?
The distance between each peak in pressure is a. twice as far \quad b. half as far \quad c. unchanged b. Half as far. Wavelength $(\lambda)=$ velocity of sound x time between peaks (T) $\quad=330 \mathrm{~m} / \mathrm{s} \times 0.0025 \mathrm{~s}=0.825 \mathrm{~m}$
More on speed of sound through air: $>$ all frequencies travel at same speed \ldots. What would happen to orchestra music if frequencies traveled at different speeds? $>$ speed of sound in air is a fundamental property of the air pressure and density

Frequency (f)	hinking about waves: \# of oscillations/sec	$(\mathrm{Hz}=1 / \mathrm{s})$
Wavelength (λ)	Distance of one complete cycle (e.g. distance between pressure maximums)	(m)
Period (T)	Time for one complete oscillation	(s)
Speed (v)	Distance traveled per second	(m/s)
Relationships among these variables:		
$\mathrm{v}=\lambda \times \mathrm{f}$		
Distance per second $=$ distance per oscillation \times \# of oscillations per second $f=1 / T$		
\# oscillations per second = 1/time for one oscillation		
$v=\lambda / T$		

