Using Physics to Understand the World: The Physics of Everyday Life


Day 2:

- Get your clickers ready!
- Motion
- Position
- Velocity

Reminders:
Reading for Tues: 1.2, 1.3 (p.24-28) Reading quiz on Tuesday Homework 1 due Tues midnight Next up: $x, v, a$ and forces

Office Hours \& Problem Solving Sessions
Thursdays $2-5 \mathrm{pm}$
Mondays 3-5 pm

In Physics Helproom (G2B90)

- Enter building opposite Buffalo
- Down stairs to basement,
- G2B90 across corrido
- Ask anyone if lost

We want to help you! Let us know if these times are totally incompatible with your schedule

Homework too hard to do alone, but ok \& learn when working together.
We will help interactions, coach, NOT give answers.

## Course Goals

1. To have an interesting class that covers physics.
2. To begin to see science in everyday life.
3. To understand that the universe is predictable rather than incomprehensible.
4. To see that science (particularly physics) is based on quantitative experiments.
5. To practice using logic, data, and analysis in order to solve problems.

Note: this is not an exercise in mathematics...
We will use math, but only as a tool for understanding ideas / the world --- basic mathematics...

## A math example

- You go into a store and can buy a tennis racket and balls for $\$ 110$. The clerk tells you that the racket costs $\$ 100$ more than the balls.
- How much do the tennis balls cost?

How did you get to class today?
a) Walked
b) Rode a bike
c) Took the bus
d) Drove
e) Zip line


## Position

Unit: meters (abbreviation m)
Meter sticks; sonar
Symbol: Often represented by 'x'




## Scalars and vectors

- Distance is a SCALAR quantity
- Fully described by one number e.g. 5 m , 1 mile etc
- Just says how far you are from origin, but not exactly where
- Always positive
- Position is a VECTOR quantity
- Contains BOTH a number (distance) AND a direction
- Says how far you are from origin and in what direction - precisely describes your location
- Can be positive or negative (determined by direction)
- Often represented by an arrow
- Length represents magnitude of vector (distance)
- Point of arrow give direction.
- IMPORTANT CONCEPT: Many other VECTOR and SCALAR quantities to appear in this course!


## Speed and velocity

- Speed is a scalar quantity
- Says how fast you are moving
- Physics units m/s
- Always positive



Speed experiment: about how fast did the cart move? (pick the closest value)
a) $100 \mathrm{~m} / \mathrm{s}$
b) $10 \mathrm{~m} / \mathrm{s}$
c) $1 \mathrm{~m} / \mathrm{s}$
d) $0.1 \mathrm{~m} / \mathrm{s}$
e) $0 \mathrm{~m} / \mathrm{s}$

Hint:
speed $=\frac{\text { distance it traveled }}{\text { time it took }}$


## Tricky speed and velocity question

I start in Boulder and drive 20 miles west to Nederland in 30 mins. When I get to Ned I go round the roundabout and head straight back to Boulder. Its downhill so I only take 20 mins for the return trip.

What is my average speed for whole trip?
a. 48 mph
b. 0 mph
c. 40 mph
d. 60 mph
e. Something else

Hint: Average Speed = Total distance covered/Total time taken
Tricky speed and velocity question
I start in Boulder and drive 20 miles west to Nederland in 30 mins.
When I get to Ned I go round the roundabout and head straight back to
Boulder. Its downhill so I only take 20 mins for the return trip.
What is my average velocity for whole trip?
a. 48 mph west
b. 0 mph
c. 48 mph east
d. 60 mph west
e. Something else
Hint: Average $\underline{v}=\underline{\Delta x} / \Delta \mathrm{t}$


