

Reading Quiz (Sections 1.1, 1.2)

1. Which carries more information about motion?
a. speed
b. velocity
c. Neither, they are the same
2. Acceleration:
a. Is always positive
b. Depends on position
c. Is a change in velocity
3. Weight is:
a. A type of mass due to gravity
b. A type of force due to gravity
c. A type of acceleration due to gravity
\quad Reading Quiz (Sections 1.1, 1.2)
4. Which carries more information about motion?
a. speed
b. velocity
c. Neither, they are the same
5. Acceleration:
a. Is always positive
b. Depends on position
c. Is a change in velocity
6. Weight is:
a. A type of mass due to gravity
b. A type of force due to gravity
c. A type of acceleration due to gravity

Tricky speed and velocity question

I start in Boulder and drive 20 miles west to Nederland in 40 mins When I get to Ned I go round the roundabout and head straight back to Boulder. Its downhill so I only take 20 mins for the return trip.

What is my average speed for whole trip?
a. 0 mph
b. 30 mph
c. 40 mph
d. 60 mph
e. Something else

Hint: Average Speed = Total distance covered/Total time taken

Summary

Last time:
Scalars: Distance and Speed
Vectors: Position and velocity
Speed = Distance covered/Time taken
Velocity: $\underline{v}=\underline{\Delta x} / \Delta t$

Graphs: x vs t and v vs t

Today:

- Graphs: relationship between position and velocity graphs
- Acceleration
- Equations of motion

Constant velocity

- Constant acceleration
- Changing units

Speed and velocity question

1. You are driving 60 miles per hour north.
2. You are driving 60 miles per hour.
a. both give your speed, can't tell your velocity.
b. 2. gives speed, 1. gives velocity.
c. both are giving your velocity.
d. 2 gives velocity, 1. gives your speed.
ans. b. 1. gives speed and direction $=$ velocity. 2. gives only you
peed but since direction not specified, do not know velocity
if speed is constant 60 mph , can velocity be changing? yes! driving in circle. direction changing $=$ velocity changing = accelerating! speed, but since direction not specified, do not know velocity.

Tricky speed and velocity question

I start in Boulder and drive 20 miles west to Nederland in 40 mins When I get to Ned I go round the roundabout and head straight back to Boulder. Its downhill so I only take 20 mins for the return trip.

What is my average speed for whole trip?
a. 0 mph
b. 30 mph
c. 40 mph
d. 60 mph
e. Something else

Hint: Average Speed = Total distance covered/Total time taken
Average speed $=40$ miles $/ 60$ minutes
$=0.67 \mathrm{miles} /$ minute $\times 60$ minutes $/$ hour $=40 \mathrm{mph}$

Tricky speed and velocity question

I start in Boulder and drive 20 miles west to Nederland in 30 mins. When I get to Ned I go round the roundabout and head straight back to Boulder. Its downhill so I only take 20 mins for the return trip.

What is my average velocity for whole trip?
a. 0 mph
b. 30 mph
c. 40 mph
d. 60 mph
e. Something else

Hint: Average $\underline{v}=\underline{\Delta x} / \Delta t$

$$
\begin{aligned}
& =\left(\underline{x}_{f}-\underline{x}_{i}\right) / \Delta t \\
& =0
\end{aligned}
$$

Tricky speed and velocity question

I start in Boulder and drive 20 miles west to Nederland in 40 mins. When I get to Ned I go round the roundabout and head straight back to Boulder. Its downhill so I only take 20 mins for the return trip.

What is my average velocity for whole trip?
a. 0 mph
b. 30 mph
c. 40 mph
d. 60 mph
e. Something else

Hint: Average $\underline{v}=\underline{\Delta x} / \Delta t$

Relationship between position vs time graph and velocity vs time graph

Velocity is the slope of position-time graph

What about velocity between 1 s and 3 s ?
a)Negative, decreasing magnitude b)Negative, Increasing magnitude)Negative, constant magnitude d)Positive , constant magnitude e)Can't tell from info given

Break to discuss units

If you drive 60 miles/hour, that's a speed.
It's also 1 mile/minute
It's also $1 / 60 \mathrm{mile} / \mathrm{s}$
"Physics" units: meters/second (m/s)

There are 1600 meters in a mile. If you drive 60 miles/hour, how fast is this in m / s ?
a) $60 \mathrm{~m} / \mathrm{s}$
b) $160 \mathrm{~m} / \mathrm{s}$
c) $27 \mathrm{~m} / \mathrm{s}$
d) $270 \mathrm{~m} / \mathrm{s}$
e) $1600 \mathrm{~m} / \mathrm{s}$

There are 1600 meters in a mile. If you drive 60 miles/hour, how fast is this in m / s ?
a) $60 \mathrm{~m} / \mathrm{s}$
b) $160 \mathrm{~m} / \mathrm{s}$
c) $27 \mathrm{~m} / \mathrm{s}$
d) $270 \mathrm{~m} / \mathrm{s}$
e) $1600 \mathrm{~m} / \mathrm{s}$

How did you get that?

- We want to change the units but keep the answer (speed) the same - Remember 2 things:
- Multiply any answer by 1 and it doesn' t change

$$
-1600 m=1 \mathrm{mile} \Rightarrow \frac{1600 \mathrm{~m}}{1 \text { mile }}=1
$$

- We have speed in $\mathrm{mi} / \mathrm{hr}$, we want m / s so:

Speed $=\left(\frac{60 m i}{h r}\right)_{\text {Then change hours to seconds }}^{\text {First change miles to meters }}$

How did you get that?

- We want to change the units but keep the answer (speed) the same - Remember 2 things:
- Multiply any answer by 1 and it doesn' t change
$-1600 m=1$ mile $\Rightarrow \frac{1600 m}{1 \text { mil }}=1$

Speed $=\left(\frac{60 m i}{h r}\right) \times 1$

How did you get that?

- We want to change the units but keep the answer (speed) the same - Remember 2 things:
- Multiply any answer by 1 and it doesn' t change
$-1600 m=1$ mile $\Rightarrow \frac{1600 m}{1 \text { mile }}=1$

Speed $=\left(\frac{60 m i}{h r}\right) \times\left(\frac{1600 m}{1 m i}\right)$

How did you get that?

- We want to change the units but keep the answer (speed) the same - Remember 2 things:
- Multiply any answer by 1 and it doesn' t change
$-1600 \mathrm{~m}=1 \mathrm{mile} \Rightarrow \frac{1600 \mathrm{~m}}{1 \text { mile }}=1$

Speed $=\left(\frac{60 n i}{h r}\right) \times\left(\frac{1600 m}{1 m i}\right)$

How did you get that?

- We want to change the units but keep the answer (speed) the same - Remember 2 things:
- Multiply any answer by 1 and it doesn' t change
$-1600 m=1$ mile $\Rightarrow \frac{1600 m}{1 \text { mile }}=1$

Speed $=\left(\frac{60 m i}{h r}\right) \times\left(\frac{1600 m}{1 m \not{ }^{\prime} \prime}\right) \times\left(\frac{1 h r}{60 \mathrm{~min}}\right)$

How did you get that?

- We want to change the units but keep the answer (speed) the same
- Multiply any answer by 1 and it doesn' t change
$-1600 m=1$ mile $\Rightarrow \frac{1600 m}{1 \text { mile }}=1$

Speed $=\left(\frac{60 n i}{h r}\right) \times\left(\frac{1600 m}{1 m i}\right) \times\left(\frac{1 h l}{60 \min }\right) \times 1$

How did you get that?

- We want to change the units but keep the answer (speed) the same - Remember 2 things
- Multiply any answer by 1 and it doesn' t change

How did you get that?

- We want to change the units but keep the answer (speed) the same
- Remember 2 things:
- Multiply any answer by 1 and it doesn't change
$-1600 \mathrm{~m}=1$ mile $\Rightarrow \frac{1600 \mathrm{~m}}{1 \text { mile }}=1$

Speed $=\left(\frac{60 n / i}{h r}\right) \times\left(\frac{1600 m}{1 m i}\right) \times\left(\frac{1 h /}{60 \mathrm{~min}}\right) \times\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)$
How did you get that?

- We want to change the units but keep the answer (speed) the same
- Remember 2 things:
- Multiply any answer by 1 and it doesn't change

$-1600 \mathrm{~m}=1$ mile $\Rightarrow \frac{1600 \mathrm{~m}}{1 \text { mile }}=1$$\quad$| Speed $=\left(\frac{60 \mathrm{~m} / \mathrm{i}}{\not / r}\right) \times\left(\frac{1600 m}{1 m^{\prime} /}\right) \times\left(\frac{1 \mathrm{~h} / \mathrm{m}}{60 \mathrm{~min}}\right) \times\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)$ |
| :--- |

How did you get that?
- We want to change the units but keep the answer (speed) the same - Remember 2 things: - Multiply any answer by 1 and it doesn't change $-1600 \mathrm{~m}=1$ mile $\Rightarrow \frac{1600 \mathrm{~m}}{1 \text { mile }}=1$

Walking man moves according to the positiontime graph, below. At which time is Walking Man slowing down (speed getting smaller)?
a) A only
b) B only
c) C only
d) A and C
e) A, B, and C

Answer a: slope is getting smaller with time.

Graph shows the velocity of a car as a function of time.
What is its acceleration?
a. $-0.25 \mathrm{~m} / \mathrm{s}^{2}$
b. $+0.25 \mathrm{~m} / \mathrm{s}^{2}$
c. $-0.5 \mathrm{~m} / \mathrm{s}^{2}$
d. $+0.5 \mathrm{~m} / \mathrm{s}^{2}$
e. $0 \mathrm{~m} / \mathrm{s}^{2}$

Equations when velocity is changing
What if velocity is changing? ... Accelerating
Acceleration (a) is a VECTOR
$\underline{\mathrm{a}}=$ slope of a velocity vs time graph
$=\frac{\text { Change in velocity }(\underline{\Delta v})}{\text { Time taken }(\Delta t)}$
$=\frac{v_{f}-\underline{v}_{i}}{t_{f}-t_{i}}$
Units $=\underline{m} / \mathrm{s}=\mathrm{m} / \mathrm{s}^{2}$
$\frac{\mathrm{m} / \mathrm{s}}{\mathrm{s}}=$

Graph shows the velocity of a car as a function of time.
What is its acceleration?
a. $-0.25 \mathrm{~m} / \mathrm{s}^{2}$
b. $+0.25 \mathrm{~m} / \mathrm{s}^{2}$
c. $-0.5 \mathrm{~m} / \mathrm{s}^{2}$
$=\frac{-5 \mathrm{~m} / \mathrm{s}-5 \mathrm{~m} / \mathrm{s}}{20 \mathrm{~s}}$
e. $0 \mathrm{~m} / \mathrm{s}^{2}$
$=\frac{-10 \mathrm{~m} / \mathrm{s}}{20 \mathrm{~s}}=-0.5 \mathrm{~m} / \mathrm{s}^{2}$

