

```
Tuesday:
Motion at constant velocity:
        - x = x 
Motion at constant acceleration
        -v = vo + at
Velocity is the gradient of a position time graph
Acceleration is the gradient of a velocity versus time graph
Today:
Motion at constant acceleration (cont)
    - x = }\mp@subsup{\textrm{x}}{0}{}+\mp@subsup{v}{0}{}\textrm{t}+1/2 at
But what causes acceleration? }->\mathrm{ Forces
Motion with constant force and acceleration
    - Newton's second law: F Fet = ma
    - Force and acceleration due to gravity
Tuesday:
Motion at constant velocity - \(\mathrm{x}=\mathrm{x}_{0}+\mathrm{vt}\)
Motion at constant acceleration - \(\mathrm{v}=\mathrm{v}_{0}+\mathrm{at}\)
Acceleration is the gradient of a velocity versus time graph
Today:
ration (cont)
- \(\mathrm{x}=\mathrm{x}_{0}+\mathrm{v}_{0} \mathrm{t}+1 / 2 \mathrm{at}^{2}\)
ut what causes acceleration? \(\rightarrow\) Forces
- Force and acceleration due to gravity
```

Equations when velocity is changing
What if velocity is changing? ... Accelerating
Acceleration (\underline{a}) $=\frac{\underline{v}_{f}-\underline{v}_{i}}{t_{f}-t_{i}}$
Rearrange:

$$
v_{f}-v_{i}=a\left(t_{f} t_{i}\right)
$$

$$
v_{f}=v_{i}+a\left(t_{f}-t_{i}\right)
$$

Now let $t_{i}=0$ s and so $v_{i}=v_{0}$ and drop the f subscript
$v=v_{0}+a t$

Graph shows the velocity of a car as a function of time.
What is its acceleration?
a. $-0.25 \mathrm{~m} / \mathrm{s}^{2}$
b. $+0.25 \mathrm{~m} / \mathrm{s}^{2}$
c. $-0.5 \mathrm{~m} / \mathrm{s}^{2}$
d. $+0.5 \mathrm{~m} / \mathrm{s}^{2}$
e. $0 \mathrm{~m} / \mathrm{s}^{2}$
$a=\frac{v_{f}-\underline{v}_{i}}{t_{f}-t_{i}}$
$=\frac{-5 \mathrm{~m} / \mathrm{s}-5 \mathrm{~m} / \mathrm{s}}{20 \mathrm{~s}}$
$=\frac{-10 \mathrm{~m} / \mathrm{s}}{20 \mathrm{~s}}=-0.5 \mathrm{~m} / \mathrm{s}^{2}$

What about position at constant acceleration?

So far:	$x=x_{0}+v t \quad(a=0)$	(1)
	$v=v_{0}+$ at $\quad(a=$ constant $)$	(2)
From (1) :	$x=x_{0}+v_{\text {average }}{ }^{\text {t }} \quad($ if $a \neq 0)$	(3)
	$v_{\text {average }}=v_{0}+1 / 2$ (change in velocity)	
	$\begin{aligned} & (\text { change in velocity })= \\ & \mathrm{v}-\mathrm{v}_{0}=(\mathrm{at}) \quad \\ & \text { (from (2)) } \end{aligned}$	
	$\Rightarrow \mathrm{vaverage}=\mathrm{v}_{0}+1 / 2$ at	(4)

Substitute (4) into (3)
$x=x_{0}+\left(v_{0}+1 / 2\right.$ at $) t$
$x=x_{0}+v_{0} t+1 / 2 a t^{2}$

A car accelerates at a steady rate from stationary along a straight road Sketch position, velocity and acceleration as a function of time

Hint:
a is slope of v vs t
v is slope of $x v s t$

Motion down a ramp 1 (with forces!)
Sketch position, velocity and acceleration vs time graphs for the car moving away from the motion detector and speeding up at a steady rate

Hints:

- The origin is always at the motion detector
- Start with acceleration
- a is slope of v vs t
- a is slope of v vs t

Force

- Force is a VECTOR
- Units: Newton (N)
- $1 \mathrm{~N}=1 \mathrm{~kg}$ * $1 \mathrm{~m} / \mathrm{s}^{2}$
- Net force on object = Vector sum of all forces acting on object
- N2: $\underline{F}_{\text {net }}=m \underline{a}$

Motion down a ramp 2 (with forces!)
Sketch Velocity, acceleration and net force vs. time graphs for the car moving away from the motion detector and slowing down at a steady rate.

Gravity
Force and acceleration due to gravity

The acceleration due to gravity on the Moon is less than it is on Earth. Suppose
$\mathrm{m}_{\mathrm{E}}=$ your mass on Earth
$\mathrm{m}_{\mathrm{M}}=$ your mass on the Moon
$\mathrm{w}_{\mathrm{E}}=$ your weight on Earth
$\mathrm{w}_{\mathrm{M}}=$ your weight on the Moon.
Which statement is correct?
a) $m_{E}>m_{M}$,
$w_{E}>w_{M}$
b) $m_{E}=m_{M}$, $\mathrm{w}_{\mathrm{E}}>\mathrm{w}_{\mathrm{M}}$
c) $m_{E}=m_{M}$,
$w_{E}=w_{M}$
d) $\begin{aligned} m_{E} & >m_{M}, \\ w_{E} & =w_{M}\end{aligned}$
) None of these

