Skydiving and car crashes

Day 5:
Reading quiz
Gravity (cont) Net forces: Terminal velocity $\quad \begin{gathered}\text { Homework } 3 \text { online } \\ \text { Midterm next Thursday }\end{gathered}$ Car crashes Don't forget to 'submit' your HW

Feedback

- How was help room?
- HW:
- how many thought difficult?
- After HR?
- Online feedhark

- A word about examples \& math..
- Graphs / interpretation
- Negative velocity
- See class website for more :)

Which required larger individual forces:
a) Lifting 501 kg bricks all at once
b) Lifting 501 kg one at a time
c) They require the same force

Which of the following is not true in riding up in an elevator?
a) There is a force of gravity pulling you down
b) There is a force of the floor pushing you up
c) These forces always balance each other out.

How much harder is it to slide a stack of two identical books across a table than it is to just slide one of those books
a) Half as hard
b) Just the same
c) Twice as hard
http://classcapture.colorado.edu/Mediasite/Catalog/Full/ 49b07ec962f946eaadad598fb352277421/?
state $=4 \mathrm{y}$ GMOOIG8xJLUdq7CVoU

Mid term exams

Hour exams in Duane G1B30 on next one, Sept 20

- worth 40 points.
-no make-up exams.
- Exam will be closed book.

Accommodations, please see me. G1b31 11-1p
ONE 3 by 5 inch formula card. You can WRITE anything on it BY HAND
Calculator.
Calculator cannot connect to outside world. No calculators on cell phones or laptops allowed.

- No sharing of calculators

Your lowest midterm score will be dropped.
Exam grades and solutions will be posted after the exam on D2L

Midterm preparation
-Prepare by applying the principles we have learned - practice.
-You shouldn't memorize answers to specific questions.
-Make a formula card now with the important equations.
-Go over homeworks, class clicker questions, questions in the book.
- Not sure how to get the answer - take it to the helproom.
-Tuesday will be a review lecture
- Lots of clicker questions
- Do your reviews BEFORE Tuesday and treat Tuesday as a practice exam.
If you wish we can have help room office hours Wed 2:30-4p

Common confusion: Weight and Mass.......

Mass is a measure of how much stuff an object has
Units: kg (old fashioned units = lb)
Force $_{\text {net }}=$ mass X acceleration Units: Newton (N).
$1 \mathrm{~kg} X 1 \mathrm{~m} / \mathrm{s}^{2}=1 \mathrm{~N}$

Weight = force of gravity on an object of mass m
Measured in N not kg
kg is unit of mass

The acceleration due to gravity on the Moon is less than it is on Earth.
The acceleration due to gravity on the Moon is less than it is on Earth. Suppose
$m_{E}=$ your mass on Earth
$m_{M}=$ your mass on the Moon
$\mathrm{w}_{\mathrm{E}}=$ your weight on Earth
$\mathrm{w}_{\mathrm{M}}=$ your weight on the Moon.
Which statement is correct?
a) $m_{E}>m_{M}, w_{E}>w_{M}$
b) $m_{E}=m_{M}, w_{E}>w_{M}$
c) $m_{E}=m_{M}, w_{E}=w_{M}$
d) $m_{E}>m_{M}, w_{E}=w_{M}$
e) None of these

Suppose
$m_{E}=$ your mass on Earth
$\mathrm{m}_{\mathrm{M}}=$ your mass on the Moon
$\mathrm{w}_{\mathrm{E}}=$ your weight on Earth
$\mathrm{w}_{\mathrm{M}}=$ your weight on the Moon.
Which statement is correct?
a) $m_{E}>m_{M}, w_{E}>w_{M}$
b) $m_{E}=m_{M}, w_{E}>w_{M}$
c) $m_{E}=m_{M}, w_{E}=w_{M}$
d) $m_{E}>m_{M}, w_{E}=w_{M}$
e) None of these

Net force

The little car is at rest on a horizontal track. Which way does the force on the car due to gravity point?

Net force

The little car is at rest on a horizontal track. Which way does the support (or normal) force on the car due to the track point?

B) Right
C) $U p$
D) Down
E) None of these

Answer: D

But $F=\mathbf{m a}$
So why is it not accelerating down into the track?

Play with this on your own

Forces and Motion Sim
http://phet.colorado.edu/en/simulation/forces-and-motion

Confusing language
Regular people: Velocity: how fast you are going = speed. Physicists: Velocity: the speed and direction of motion. Regular people: acceleration: speeding up. Physiciss: acceleration: the rate of speeding up or slowing down or changing direction of motion. Regular people: $\mathrm{kg}:$ a weight $=2.2$ pounds, Physicists: kg a mass. On earth this mass has a weight of $1 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2}=9.8 \mathrm{~N}$

A 100 kg man steps out of a plane. Immediately after he leaves the plane:
a. The force of gravity on the man is 100 kg downwards, the net force on him is 100 kg downwards, and his acceleration is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downwards.
b. The force of gravity on the man is 100 kg downwards, his net force is 0 , and his acceleration is $0 \mathrm{~m} / \mathrm{s}^{2}$.
c. The force of gravity on the man is 980 N downwards, the net force on him is 980 N downwards, and his acceleration is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downwards.
d. The force of gravity on the man is 980 N , the net force on the man is 0 N , and his velocity increases until it is $9.8 \mathrm{~m} / \mathrm{s}$ downwards and then stops increasing.
e. The force of gravity on the man is 980 N , the net force on the man is 0 N , and his acceleration is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downwards.
Terminal velocity
A 100 kg man steps from a plane.
Immediately after he leaves plane,
c. The force of gravity on the man is
980 N downwards, the net force on
him is 980 N downwards, and his
acceleration is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downwards.
Forces always measured in Newtons $(\mathrm{N})!100 \mathrm{~kg}$ is a mass.
Force of gravity on an object $=\quad \mathrm{m} \quad \mathrm{g}$
$=100 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2}=980 \mathrm{~N}$ downwards
$\mathrm{F}_{\text {net }}=$ sum of all forces $\rightarrow \mathrm{In}$ this case, $\mathrm{F}_{\text {net }}=\mathrm{F}_{\text {gravity on man }}=\mathrm{mg}$
Acceleration $=\frac{\mathrm{F}_{\text {net }}}{\mathrm{m}}=\frac{\mathrm{mg}}{\mathrm{m}}=\mathrm{g}$ (downwards)
Acceleration is always in the same direction as the net force!

Terminal velocity

After the man falls for some time, he finds that he is falling at a constant velocity. At this time..
a. The force of gravity on the man is 100 kg downwards, the ne force on him is 100 kg downwards, and his acceleration is 9.8 $\mathrm{m} / \mathrm{s}^{2}$ downwards.
b. The force of gravity on the man is 100 kg downwards, his net force is 0 , and his acceleration is $0 \mathrm{~m} / \mathrm{s}^{2}$.
c. The force of gravity on the man is 980 N downwards, the net force on him is 980 N downwards, and his acceleration is 9.8 $\mathrm{m} / \mathrm{s}^{2}$ downwards.
d. The force of gravity on the man is 0 N , the net force on the man is 0 N , and his acceleration is $0 \mathrm{~m} / \mathrm{s}^{2}$.
e. The force of gravity on the man is 980 N , the net force on the man is 0 N , and his acceleration is $0 \mathrm{~m} / \mathrm{s}^{2}$.

