
Reading quiz
Which required larger forces:
a) Lifting 501 kg bricks all at once
b) Lifting 501 kg one at a time
c) They require the same force
Which of the following is not true in riding up in an elevator?
.

Question: Relating position, velocity and acceleration
Toss a basketball straight up in air with initial velocity $\mathbf{v}_{\mathbf{0}}$ Plot position, velocity and acceleration vs time.

- Introduced forces
- $E_{\text {net }}=$ ma
day: More on forces
- More on gravity

Net forces : Terminal velocity

- Car crashes

The acceleration due to gravity on the Moon is less than it is on Earth. Suppose
$\mathrm{m}_{\mathrm{E}}=$ your mass on Earth
$\mathrm{m}_{\mathrm{M}}=$ your mass on the Moon
$\mathrm{w}_{\mathrm{E}}=$ your weight on Earth
$\mathrm{w}_{\mathrm{M}}=$ your weight on the Moon.
Which statement is correct?
a) $m_{E}>m_{M}, w_{E}>w_{M}$
b) $m_{E}=m_{M}, w_{E}>w_{M}$
c) $m_{E}=m_{M}, w_{E}=w_{M}$
d) $m_{E}>m_{M}, w_{E}=w_{M}$
e) None of these

Common confusion: Weight and Mass.......

Mass is a measure of how much stuff an object has Units: kg (old fashioned units = lb)

Force $_{\text {net }}=$ mass X acceleration Units: Newton (N)
$1 \mathrm{~kg} \times 1 \mathrm{~m} / \mathrm{s}^{2}=1 \mathrm{~N}$

Weight = force of gravity on an object of mass m Measured in N NOT kg or lb kg and lb are units of mass

The acceleration due to gravity on the Moon is less than it is on Earth. Suppose
$\mathrm{m}_{\mathrm{E}}=$ your mass on Earth
$\mathrm{m}_{\mathrm{M}}=$ your mass on the Moon
$\mathrm{w}_{\mathrm{E}}=$ your weight on Earth
$w_{M}=$ your weight on the Moon.
Which statement is correct?
a) $m_{E}>m_{M}, w_{E}>w_{M}$
b) $m_{E}=m_{M}, w_{E}>w_{M}$
c) $\mathrm{m}_{\mathrm{E}}=\mathrm{m}_{\mathrm{M}}, \mathrm{w}_{\mathrm{E}}=\mathrm{w}_{\mathrm{M}}$
d) $m_{E}>m_{M}, w_{E}=w_{M}$
e) None of these

Net force

The little car is at rest on a horizontal track. Which way does the force on the car due to gravity point?

A) Left
B) Right
C) Up
D) Down
E) None of these

Net force

The little car is at rest on a horizontal track. Which way does the support (or normal) force on the car due to the track point?

A) Left
B) Right
C) Up
D) Down
E) None of these

The little car is on a horizontal track, and blown by a fan.
Which way does the net force point?

Free body (force) diagram
${ }^{+}{ }^{+}$

Force, mass and acceleration

The car is pushed by the fan with a constant force. Its velocity and acceleration are as shown below. Now double the mass of the car. Sketch what the new velocity and acceleration curves look like.

\quad Terminal velocity
After the man falls for some time, he finds that he is falling at a
constant velocity. At this time...
a. The force of gravity on the man is 100 kg downwards, the net
force on him is 100 kg downwards, and his acceleration is 9.8
$\mathrm{~m} / \mathrm{s}^{2}$ downwards.
b. The force of gravity on the man is 100 kg downwards, his net
force is 0 , and his acceleration is $0 \mathrm{~m} / \mathrm{s}^{2}$.
c. The force of gravity on the man is 980 N downwards, the net
force on him is 980 N downwards, and his acceleration is 9.8
$\mathrm{~m} / \mathrm{s}^{2}$ downwards.
d. The force of gravity on the man is 0 N, the net force on the man
is 0 N , and his acceleration is $0 \mathrm{~m} / \mathrm{s}^{2}$.
e. The force of gravity on the man is 980 N , the net force on the
man is 0 N , and his acceleration is $0 \mathrm{~m} / \mathrm{s}^{2}$.

Terminal velocity	
$\mathrm{F}_{\text {air }}$ increases with velocity: \Rightarrow Before reaching terminal velocity, forces don't quite cancel.	
\rightarrow In this case, $\mathrm{F}_{\text {net }}=\mathrm{F}_{\text {gravity on man }}+\mathrm{F}_{\text {ai }}$ - $\mathrm{F}_{\text {net }}=$ mass \times acceleration - Since $F_{\text {net }}$ is not zero, tells us man will - Acceleration will be smaller than 9.8 m force of gravity on man. - Velocity will be changing! Speeding	celerate! because net force is smaller than in downwards direction

Terminal velocity numbers

Humans: $\mathbf{1 2 0 m p h}$.
Reached after falling 50 stories Falls are fatal from 15 to $\mathbf{3 8} \mathbf{~ m p h}$

Cats: 60 mph .

Reached after falling about 5 stories
Can survive a terminal velocity fall
Why Terminal Velocity lower for cats than humans?

- Smaller mass \Rightarrow force of gravity smaller
- More hair \Rightarrow Air resistance increases rapidly with increasing velocity

Smaller animals: Mice, spiders etc
Even smaller terminal velocity
Even smaller terminal velocity
Very likely to survive a terminal velocity fall
Large raindrops ~ 20 mph

