

Energy conservation - background ideas

- You give your friend money - she has more and you have exactly that amount less. There is still the same amount money in the world.
- Put money in into bank in one form- quarters,

Get out money in other form ($\$ 20$ bills).
ols there a connection between in and out?
-How do you know what it is?
a. Do experiments: find out that if use conversion

80 quarters = one $\$ 20$ bill, always get predicted number of $\$ 20$
bills out, for number of quarters in. If not, get new bank!

Energy conservation - background ideas

Move to tropical island

Currency = coconuts (tied to dollar).
Now putting in dollars to local bank, getting out coconuts
Is bank any good? Is number of coconuts out connected with dollars in?

What experiments could you do to check?
a. try converting $\$ 50$ several times into coconuts, see if number is same. b. try converting i) $\$ 100$ dollars and then ii) $10 \$$ dollars to coconuts, see if ratio with $\$ 50$ is $\times 2$ in case (i) and and $1 / 5$ in case (ii)? c. convert $\$ 20$ to coconuts and back see if $\$ 20$.
d. no way to tell except asking natives.
e. a. and b. and c.

Energy conservation - background ideas

Move to tropical island

Currency = coconuts (tied to dollar).
Now putting in dollars to local bank, getting out coconuts
is bank any good? Is number of coconuts out connected with dollars in?

What experiments could you do to check?
a. try converting $\$ 50$ several times into coconuts, see if number is same. b. try converting i) $\$ 100$ dollars and then ii) $10 \$$ dollars to coconuts, see if ratio with $\$ 50$ is $\times 2$ in case (i) and and $1 / 5$ in case (ii)? c. convert $\$ 20$ to coconuts and back see if $\$ 20$
d. no way to tell except asking natives
e. a. and b. and c

Energy conservation - background ideas

Why really useful to know that money is conserved going in and out of bank?

Answer:
don't have to keep track of all the details of what is happening in bank,
Whatever money you put in in one form, you get out the same amount in another. Just have to know the conversion
e.g. $\$ 1=3$ coconuts, 100 pennies $=1$ dollar, $201 \$$ bills $=1 \$ 20$ bill, \ldots

Energy conservation - background ideas

Answer: don't have to keep track of all the details of what is happening in bank, Whatever money you put in in one form, you will get out in another
$1=3$ to know the conversion.
$\$ 1=3$ coconuts, 100 pennies $=1$ dollar, $201 \$$ bills $=1 \$ 20$ bill,..

Energy conservation is useful for similar reasons:

- Don't have to know details of how energy is converted from one form to another - Just know that SAME amount of energy put in in form 1 comes out in form 2 i.e. conversion factor is 1

Can do a bunch of experiments to check this
Different forms of energy:
gravitational potential $=$ mass $\times \mathrm{g} \times$ height

- spring potential $=1 / 2 \times$ spring constant $\times(\text { amount stretched })^{2}$
- kinetic $=1 / 2$ mass \times speed 2
thermal $=$ constant x temperature

Energy conservation - background ideas

Answer: don't have to keep track of all the details of what is happening in bank,
Whatever money you put in in one form, you will get out in another
Just have to know the conversion.
$\$ 1=3$ coconuts, 100 pennies $=1$ dollar,20 $1 \$$ bills $=1 \$ 20$ bill, .

Energy conservation is useful for similar reasons:

- Don't have to know details of how energy is converted from one form to another - Just know that SAME amount of energy put in in form 1 comes out in form 2
i.e. conversion factor is 1 .

Can do a bunch of experiments to check this
Different forms of energy:

- gravitational potential $=$ mass $\times \mathrm{g} \times$ height
- spring potential $=1 / 2 \times$ spring constant $\times(\text { amount stretched })^{2}$
- kinetic $=1 / 2$ mass \times speed 2
thermal $=$ constant x temperature

Energy conservation - background ideas

Answer: don't have to keep track of all the details of what is happening in bank,
Whatever money you put in in one form, you will get out in another
Just have to know the conversion.
$\$ 1=3$ coconuts, 100 pennies $=1$ dollar, $201 \$$ bills $=1 \$ 20$ bill, \ldots
Energy conservation is useful for similar reasons:
- Don' t have to know details of how energy is converted from one form to another
- Just know that SAME amount of energy put in in form 1 comes out in form 2
i.e. conversion factor is 1 .
- Can do a bunch of experiments to check this
Different forms of energy:
- gravitational potential $=$ mass $\times \mathrm{g} \times$ height
- spring potential $=1 / 2 \times$ spring constant \times (amount stretched) ${ }^{2}$
- kinetic $=1 / 2$ mass \times speed ${ }^{2}$
- thermal $=$ constant \times temperature

Energy conservation - background ideas

Answer: don't have to keep track of all the details of what is happening in bank,
Whatever money you put in in one form, you will get out in another
Just have to know the conversion.
$\$ 1=3$ coconuts, 100 pennies $=1$ dollar,20 $1 \$$ bills $=1 \$ 20$ bill, ..

Energy conservation is useful for similar reasons:

- Don' t have to know details of how energy is converted from one form to another
- Just know that SAME amount of energy put in in form 1 comes out in form 2
i.e. conversion factor is 1 .
- Can do a bunch of experiments to check this

Different forms of energy:

- gravitational potential $=$ mass $\times \mathrm{g} \times$ height
- spring potential $=1 / 2 \times$ spring constant $\times(\text { amount stretched })^{2}$
- kinetic $=1 / 2$ mass \times speed 2
- thermal $=$ constant \times temperature

Today we' ll look at ramps:
Compare pushing carts up short steep ramps and longer flatter ones:

- How does the pushing force compare?
- How does the work done compare?
- How fast will it be moving if it gets lose and rolls down?
- Work (connection between forces and work)
- Conservation of energy
- Gravitational PE
- Kinetic Energy
Demo: Push frictionless cart up 2 meter ramp with constant force
at constant velocity.
If want to push up ramp at constant velocity, force applied by hand must be:
a. greater than the weight (=mg) of the car
b. Iess than the weight of the car
c. the same as the weight of the car
Note only a fraction of gravity:
Weight of car = 17.5 \quad Force to push car up $=1 \mathrm{~N}$

Work done pushing car up ramp

How much "work" (force applied x distance moved in direction of force) did I have to do to push cart up ramp a distance of 2 m at a constant velocity?
Note: Work is in Joules $(\mathrm{J})=$ Newton $(\mathrm{N}) \times$ meters (m).

$\begin{array}{llll}\text { a. } 0.5 \mathrm{~J} & \text { b. } 1 \mathrm{~J} & \text { c. } 2 \mathrm{~J} & \text { d. } 10 \mathrm{~J}\end{array}$
e. impossible to tell from this data

Work done pushing car up ramp
How much "work" (force applied x distance moved in direction of force) did I have to do to push cart up ramp a distance of 2 meters at a constant velocity?

$\begin{array}{llll}\text { a. } 0.5 \mathrm{~J} & \text { b. } 1 \mathrm{~J} & \text { c. } 2 \mathrm{~J} & \text { d. } 10 \mathrm{~J}\end{array}$
e. impossible to tell from this data

Work done pushing car up ramp
Now double the height of the ramp (keeping ramp length constant)

If ramp is twice as steep, force applied by hand to push at constant speed will need to be:
a. The same as for the shallower ramp
b. Between the force for the shallower ramp and two times that force.
c. Two times greater than for shallow ramp
d. Four times greater than for shallow ramp Hint: twice as steep means
e. $1 / 2$ that for shallow ramp Gravity is not cancelled as m

How much work did I have to do to push cart up new ramp (now twice as steep) a distance of 2 m ?

How much work to go to same height as before ($h=11.5 \mathrm{~cm}$) i.e. halfway up steeper ramp?

a) 0.5 J
b) 1 J
c) 2 J
d) 4 J
e) Can't tell from information given

How much work to go to same height as before ($\mathrm{h}=11.5 \mathrm{~cm}$) i.e. halfway up steep ramp?

Now make ramp 3 times as steep as at first

How big a force is needed to push car up?
a. 1 N
a. 1 N
b. 2 N

c.
d.

d. 15.5 N
e. 9.8 N

Now make ramp 3 times as steep as at first

Now make ramp 3 times as steep as at first

$=3 \mathrm{~N} \times 2 / 3 \mathrm{~m}=2 \mathrm{~J}$

NOTE: SAME WORK DONE TO GO TO SAME HEIGHT AGAIN!!!

```
Summary of data from ramp:
1) Measured force required to push cart up frictionless ramp at constant velocity:
Conclusion: Force changes proportional to steepness.
```

2) Measured distance travelled up ramp to get to the same height Conclusion: Changes as $1 /$ steepness.
3) Calculated: Amount of work done $=$ force of push along ramp \times distance along ramp,
Conclusion :

Same work done to push car to same height! (independent of ramp steepness)

What about just lifting the car vertically?

What would be force needed to lift cart straight up at constant velocity?
a. greater than the weight $(=\mathrm{mg})$ of the car
b. less than the weight of the car
c. the same as the weight of the car

What about just lifting the car vertically?

What would be force needed to lift cart straight up at constant velocity?
a. greater than the weight $(=\mathrm{mg})$ of the car
b. less than the weight of the car
c. the same as the weight of the car (mg)

Can measure: Weight $=17.5 \mathrm{~N}$

What about just lifting the car vertically?

What would be work required to lift straight up a distance $h=11.5 \mathrm{~cm}$?
a.I don' t know
b. 1 J
b. 2 J
c.
c. 2 J
d .5 J

General formula for work done when lifting stuff
In general, the work done raising any object of mass m by height h is
always the same, however we do it.
Can we find a formula for the work done?

Consider lifting vertically:
$\mathrm{F}_{\text {lift }}=\mathrm{mg}$
Work done on object

$=\mathrm{mg}^{2} \times \mathrm{h}$

