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Some Applications of Newton’s Laws. 

 
 In this chapter, we get some practice applying Newton’s laws to various physical problems.  We 

do not introduce any new laws of physics.   

 

 

Solving Fnet =  ma  problems with multiple bodies 
 

Problem: A mass m1 is pulled up a frictionless incline by a string over a pulley and a hanging 

mass m2. 

 

We know   m1, m2, and the angle .   

 

We seek : 

T = tension in the cord, 

a = acceleration of the mass,  

N = normal force on m1 

 

 Step 1 

Draw a free-body diagram for each moving object. 

Label the force arrows with 

the magnitudes of the forces. 

 

Notice that T is the same for 

both objects (by NIII). 

 

Use m1, m2, in the diagrams, 

not m. 

 
 

 Step 2      

 For each object, choose xy axes so that the acceleration vector a is in the (+) direction. 

 

Notice that we can choose 

different axes for the different 

objects. And we can tilt the 

axes if necessary. 
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Step 3  For each object, write the equations x x y yF m a , F m a    

 
 

 
 

m1 :     
1 1

1

x-eqn   (1) T m gsin m a

y-eqn   (2) N m g cos 0

   

   
 

 

m2 :  2 2(3) m g T m a    

 

Notice that a a   is the same for both m1 and m2 since they are connected by a string that 

doesn't stretch. 

 

Now we have a messy algebra problem with 3 equations in 3 unknowns: 

 

1 1

1

2 2

(1) T m gsin m a

(2) N m g cos 0

(3) m g T m a

   

   

  

  The unknowns are T , N , and a. 

 

We can solve for N right away.  Eqn (2)      1N m gcos   

 

Now we have 2 equations [(1) & (3)] in 2 unknowns ( a & T ). 

 

Solve (1) for T and plug into (3) to get an equation without an T : 

 

(1)       1 1 1T m gsin m a m (gsin a)       

 

(3)      2 1 2m g [m (gsin a)] m a     
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Now solve this last equation for a:    

    

      

 

 

 

 

Finally, if you have any strength left, we can solve for tension T by plugging our expression for 

acceleration a back into either (1) or (3) and solving for T.    From (3), we have 

 

2 2 2T m g m a m (g a)    .    

 

Plugging in our big expression for a, we get 

 

2 1
2 2

1 2

m g m gsin
T m (g a) m g

(m m )

  
    

 
 

 

We can simplify: 

 

1 2 2 1 1 2 2 1
2 2

1 2 1 2 1 2

1 1 2 1
2

1 2 1 2

g (m m ) m g m gsin m g m g m g m gsin
T m m

(m m ) (m m ) (m m )

m g m gsin m m g
T m T (1 sin )

(m m ) (m m )

         
     

     

  
     

  

 

 

 

Do these expressions make sense?  Let’s check some limits.   

 

If m1 = 0, then m2 should be freely falling with a = g  and the tension T should be zero.  Check 

that this is so. 

 

If m2 = 0, then m1 should slide down the incline with acceleration a = –g sin  (since it would be 

accelerating in the negative direction).  Check that this is so. 

2 1 1 2 1 2

2 1

1 2

m g m gsin m a m a a (m m )

m g m gsin
a

(m m )

      

 



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Forces and circular motion 
 

NII:  netF m a     To make something accelerate, we need a force in the same direction as 

the acceleration.   Centripetal acceleration is always caused by centripetal force, a force 

toward center.   “Centripetal” means “toward the center”.  “Centrifugal” means something totally 

different.  Centrifugal forces don’t exist!  More on that below. 

 

Example: Rock twirled on a string.  (Assume no gravity)   

 

Given: m = 0.1 kg  ,   T (period) = 1 s ,   radius r = 1 m 

 

What is tension FT in the string ?  (Here, we use 

symbol FT , since T already taken by period.) 

 

FT is the only force acting.  (No such thing as 

"centrifugal force"!) 
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What about the outward "centrifugal force"? 
 

A person on a merry-go-round (or twirled on a rope by a giant) "feels" an outward force.  This is 

an illusion!  There is no outward force on the person.  Our intuition is failing us. Our intuition 

about forces was developed over a lifetime of experiences in inertial (non-accelerating) reference 

frames.  If we are suddenly placed in an accelerating reference frame, our brains (wrongly) 

interpret our sense impressions as if we were still in a non-accelerating frame.  

 

The result is that the direction of the perceived force is exactly opposite the direction of the true 

force.  Example: A person in car accelerating forward.  The chair pushes the driver forward.  The 

force on the driver is in the forward direction. But the driver "feels" herself pressed back into the 

seat.  It seems there is some force pushing the driver backward.  WRONG! 

 
 

"Centrifugal force"  (not to be confused with "centripetal force") is also called a "pseudo-force" 

or "fictitious force" .  Newton's Laws are only valid in a non-accelerating reference frame (an 

inertial frame).  If we try to analyze motion in a non-inertial frame (for instance, in a rotating 

a 

r 
FT 

FT F.B.D: 
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frame) then Newton's Laws don't hold.  However, we can pretend that Newton's Laws hold in an 

accelerating frame if we pretend that "pseudo-forces" exist.  That is, we can get the right answer 

if we makes two mistakes.  In my opinion, this is a Devil's bargain.  Computational convenience 

has come at the price of endless confusion of millions of physics students (and many 

professional engineers!).  My advice: If you have choice, NEVER do calculations in non-inertial 

frames. Avoid using fictitious forces. 

 

Consider the rock on the string again (still no gravity).  If the string 

breaks, then there is no longer any force on the rock and it will move in a 

straight line with constant velocity [according to NI: if Fnet = 0, then v = 

constant].  The reason the rock does not move in a straight line is 

because the string keeps pulling it inward, turning it away from its 

straight-line path.  There is NO outward force on the rock. 

 

 

 

 

 

Friction ...    is very useful!  We need friction to walk.  Friction is not well understood.   

   The amount of friction between two surfaces depends on difficult-to-

characterize details of the surfaces, including microscopic roughness, cleanliness, and chemical 

composition. 

 

-- friction involves tearing, wear between 

microscopically rough surfaces. 

 

 

 

 

 

If two metal surfaces are atomically smooth and clean (almost impossible to achieve), they will 

bond on contact = "cold weld". 

 

Empirical observations about friction: 

 

 the magnitude of the force of friction  f  between 2 surfaces is proportional to the normal force 

N, not the area of contact, ( f  N ). 

 

Pull a block of mass m along a surface. Regardless of 

orientation, you get the same normal force (N = mg), 

and you get the same frictional force f. 

 

Why not f  area of contact?  Because more area  less weight per area. 

 

 static friction is different than sliding friction (also called kinetic friction).  The maximum 

magnitude of static friction force usually larger than the magnitude of kinetic friction force. 

v 
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Kinetic Friction  (also called sliding friction) 

 

  f = K N     (Not a law, just an empirical observation – usually, but not always, true) 

 

K = coefficient of kinetic friction = dimensionless number    K   > 0 

(K  can be greater than 1 but, usually, K   <  1.) 

 

Example: A block of mass m is being pushed along a rough horizontal table.  One maintains a 

constant velocity v with a horizontal external force of magnitude Fext.  What is K ? 

 

 Free-body diagram: direction of frictional force f is always 

opposite to the motion: 

 

 

 

 

 

velocity = constant    a = 0       Fnet = 0          

 

  In y-direction:  N = mg In x-direction:  Fext =  KN       So,  Fext =  K mg, or... 

 

    
ext

K

F

mg
   

 

Static Friction  

 

  fstatic  <  fstatic, max  = S N    (the maximum magnitude of the static friction force is S N) 

 
S = coefficient of static friction  =  dimensionless number    S > 0 

 

 Usually, S  > K  (maximum static friction is greater than kinetic friction) 

 

Consider a book sitting on a table. You pull on a book with a small force Fext to the right, but it 

doesn't move.  There must be a frictional force to the left (otherwise the book would move). 

 

If you increase the external force 

and the book still does not move, 

the frictional force must have 

gotten bigger to match. 

 

If you make the external force big enough, the book will suddenly start to move.  Just before the 

book moved, the static friction was at its maximum value. So the magnitude of the static friction 

v = const 

K = ? Fext 

mg 

N 
Fext f = KN 

x 

y 
v 

Fext friction 
Fext friction 
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force can be anything between zero and a maximum value, given by fmax  = S N.  The book will 

remain stationary until Fext > fmax = S N.  Then the book will start to slide. 

 

Usually, S  > K  large force is needed to start an object sliding, but then a smaller force is 

needed to keep it sliding.  Anyone who has pushed a fridge across the kitchen floor knows this. 

 

There is no good theory of friction   's cannot be computed; instead, they are determined 

experimentally. 

 

Example: Friction on an inclined plane 

A mass m on an incline at angle , with kinetic 

friction coefficient K.  What size external force 

Fext is required to maintain an acceleration of 

magnitude a up the incline? 

 

 

Step 1: Free-body diagram. 

 

 

Step 2: Choose coordinate system.  

(Make direction of acceleration = + direction) 

 

 

Step 3: x x y yF m a , F m a    

 
Notice:  

x-component of weight = –mg sin

y-component of weight = –mg cos 

 

 
Y:   ay = 0  +N – mg cos = 0,    N = mg cos 

 

 

X:   ax = a    +Fext  – KN – mg sinm a 

 

Combine X and Y equations:  

+Fext  –  K mg cos  –  mg sinm a       Fext ma  +K mg cos + mg sin  

 

 (Whew! ) 
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Example:  A mass m on a flat table, with sliding friction coefficient K, is pulled along the table by 

a force Fext at angle .  What is the (magnitude of the) acceleration a? 

 

 

 

  

Steps 1, 2: 

 

 

 

 

Step 3:   

Y-motion: y yF m a ,  a y = 0     yF 0     (forces up) =  (forces down)      

 

N + Fext sin  = mg   ,     N = mg – Fext sin       (Do you understand the sin here?) 



X-motion: x xF m a ,  a x = a          Fext cos  – KN  = m a  

 

Now combine X and Y results:  

 

Fext cos  – K(mg – Fext sin   = m a         ext

K K

notice that all terms have units of [a]

F
a cos sin g

m
      

 

 

  

 

Example: Rotation with friction.  A car rounds a curve on a flat road (not banked).  The radius 

of the circular curve is r = 100 m, and the speed of the car is v = 30 m/s (  68 mph).  How large 

a static friction coefficient (S, not K !) is needed for the car to not skid off the road? 

 

 
 

Fnet = Ffric = m a          S N = m v
2
 / r  (car about to skid   Ffric = S N ) 

 

N = mg         S m g = m v
2
 / r       (m's cancel)     

r 

a 

v 

Top view View from rear of car 

a 

Ffric 

mg 

N 
Ffric 


Fext 

K
m 

a = ? 

mg 

N 

f = KN 

x 

y 

a 

Fext 
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2 2

S 2

v 30m/s
0 92

g r 9 8m/s 100m

( )
.

( . )( )
     (no units) 

 

So, need S  0.92 or else car will skid.  For rubber on dry asphalt S  1.0 , for rubber on wet 

asphalt S  0.7.  So car will skid if road is wet. 

 

 

 


