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Work and Energy 

 
Energy is difficult to define because it comes in many different forms.  It is hard to find a single 

definition which covers all the forms.  But we will define energy in the next chapter, as precisely 

as possible.  For now, let’s just list some forms of energy. 

 

Some types of energy: 

kinetic energy (KE)  =  energy of motion 

thermal energy  =  energy of "atomic jiggling"   

potential energy(PE)  =  stored energy of position/configuration   

 various kinds of PE: 

 gravitational 

 electrostatic 

 elastic (actually a form of electrostatic PE)  

 chemical (another form of electrostatic PE) 

 nuclear 

radiant energy  =  energy of light 

mass energy  (Einstein says mass is a form of energy.) 

 

Almost all forms of energy on earth can be traced back to the Sun : 

 

Example: Lift a book (gravitational PE)   chemical PE in muscles  chemical PE in food  

cows   grass   sun (through photosynthesis) ! 

 

Some textbooks say that energy is the ability to do work (not a bad definition, but rather vague).  

A key idea that we will use over and over again is this: Whenever work is being done, energy 

is being changed from one form to another or is being transferred from one body to 

another. The amount of work done on a system is the change in energy of the system. 

 

We’ll use the symbol W for work and the symbol U for energy. (We will define work later.)  The 

English sentence “The work done equals the amount of energy transformed” we can write as 

W  =  U 
 

This is called “The First Law of Thermodynamics”.   

 

[An aside. Actually the First Law of Thermodynamics is this:  

“heat added plus work done equals change in energy” or   Q + W  = U .  (Q is the symbol for 

heat).  In this chapter we won’t consider adding heat to a system (like holding a flame under it), 

so Q = 0 and we have just W = U.] 

 

As we'll see later, energy is an extremely useful concept because energy is conserved.  When we 

say energy is conserved, we mean that energy cannot be created or destroyed; it can only be 

transformed from one form to another, or transferred from one body to another. The total amount 

of energy everywhere is fixed; all we can do is shuffle it around. 
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Notice that this is not what people normally mean when they say "Conserve energy."  When the 

power company says "Conserve energy", they really mean "Don't convert the energy stored as 

chemical potential energy into other forms of energy too quickly."  To a scientist, the phrase 

"conserve energy" is meaningless, because energy is always conserved.  You can't NOT 

conserve energy. 

 

To understand energy and conservation of energy, we must first define some terms: work, kinetic 

energy (KE), and potential energy (PE).  We’ll get to PE in the next Chapter. Let’s look at work 

and KE. 

 

Definition of work done by a force:  consider an object moving while a constant force F  is 

applied to the object.  While the force is applied, the object moves along some axis (x-axis, say) 

through a displacement of magnitude |x| =  d.   

 

Notice that the direction of displacement is not the 

same as the direction of the force, in general. 

 

 

 

Work done by a force F =    F x  W F d F cos d F d     ||   

 

F|| = component of force along the direction of displacement,    WF  = F||  distance 

 

Unit of work:  [W] = [F][d] = 1 Nm = 1 joule = 1 J 

 

If the displacement vector is r , the work done can be written in terms of the dot product as  

FW F r    

 
Vector Math interlude: 

The dot product of two vectors A and B, "A dot B",  is defined as  

 

A B ABcos    

 

 

The dot product of two vectors is a number, not a vector. (Later on, 

we will see another way to define the product of two vectors, called 

the "cross-product".  The cross-product of two vectors is a vector.)   

 

The dot product is the magnitude of one vector (say A) times the 

component of the other vector (B) along the direction of the first (A).  

For instance, suppose that we align the x-axis with vector A.  Then 

xA B ABcos AB    .     

 

F 

xi 



xf x| = d 

B 



 

B 



 
x 

y 

Bx  

= B cos 



  EW-3 

9/28/2013  University of Colorado at Boulder 

The dot product is positive, negative, or zero depending on the relative directions of the vectors 

A and B.  When A and B are at right angles ( = 90
o
), the dot product is zero.  When the angle  

is greater then 90
o
, then the dot product is negative. 

 

 
 

It is not difficult to prove, from the definition, that .. 

 the dot product is commutative: A B B A    

 the dot product is associative:   A B C A C B C       

 

The dot product can be written in terms of the components of the vectors like so: 

 

x x y y z zA B A B A B A B     

 

Proof (in 2D) :    x y x y x x x y x x y y
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆA B A i A j B i B j A B i i A B i j ... A B A B             

In the last step, we used the fact that ˆ ˆ ˆ ˆi i 1 and i j=0   . 

 
 

So, the work done by a force F is FW F r    .  Work is not a vector, but it does have a sign, 

(+) or (–).  Work is positive, negative, or zero, depending on the angle between the force and the 

displacement.  The formula WF = F d cos  gives the correct sign, because cos is negative when 

 > 90. 

 
 

Why do we define work this way?  Answer: Whenever work is done, energy is being 

transformed from one form to another.  The amount of work done is the amount of energy 

transformed. (This is the First Law of Thermodynamics.) 

 

B 



 

 < 90
o
,  AB positive 

B 

 

 = 90
o
,  AB = 0 

A 



 

 > 90
o
,  AB negative 

F 



r 

 < 90,  W positive 

F 

r 

 = 90,  W = 0 

F 



r 

 > 90,  W negative 
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Example of work: Move book at constant velocity along a rough table with a constant 

horizontal force of magnitude Fext = 10 N  (10 newtons).  Total displacement is x = 1 m. 

 

work done by external force = 

 

WFext  =  + Fext  x   =   10 N  1 m  =  10 Nm  = +10 J 

 

 

Since velocity = constant, Fnet = 0, so |Fext | = |Ffric | = 10 N 

Work done by force of friction  =  WFfric   =   – |Ffric|  |x|   =   – 10 J   (since cos 180
o
 = –1) 

 

Work done by normal force FN is zero: WFN = 0  

(since normal force is perpendicular to displacement, cos 90
o
 = 0.) 

 

 

Work done by the net force is zero.   Since v = constant  Fnet = 0   Wnet = 0. 

 

Moral of this example: Whenever you talk about the work done, you must be very careful to 

specify which force does the work. 

 

 

Definition of kinetic energy (KE) of an object of mass m, moving with speed v: 

 
21

2KE m v  

KE > 0 always.  An object has a big KE if it is massive and/or is moving fast.  KE is energy of 

motion. 
2

2

units of force =[m][a]

m m
Units of KE = [KE kg kg m N m J (joules)

s s

 
        

 
]

  

Units of KE = units of work = joules 

 

Example of KE:  
Bowling ball (weight mg = 17 lbs, mass m = 7.7 kg ) with speed v = 7 m/s (typical bowling 

speed).     KE  =  0.5 (7.7 kg) (7 m/s)
2
     190 J 

 

Why do we define work and KE like we have?  Because work and KE are related by the … 

 

Work-Kinetic Energy Theorem: 

The work done by the net force on a single point-like object is equal to the change in kinetic 

energy of that object. 

net Fnet f iW W KE KE KE      

 

Notice that this is the work done by the total force, the net force.  The Work-KE Theorem 

applies in the special cast that the object is “point-like”, meaning the object can be treated like a 

x = +1 m 

Ffriction Fext = 10 N 

FN 

x 
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single particle with no deformation and no rotation.  (If the object has any moving internal parts, 

then there is no single speed for the object and the KE of the object is not simply 1/2mv
2
.) 

 

"Proof" of Wnet =  KE.  Here we show that the Work-KE Thm is 

true for a special case. I push a book of mass m along a table with a 

constant external force of magnitude Fext.  The force of friction on the 

book has magnitude Ffric. The book starts with an initial velocity vi  

and ends with a final velocity vf.  While the force is applied, the book 

moves a displacement x.  We show that Wnet = KE in this case. 

 

Fnet = Fext  Ffric  (the normal force and force of gravity cancel).  Wnet  =  +Fnet x  

 

What is KE?  KE involve v
2
, so we look for a formula involving v

2
.  Since Fnet = constant, the 

acceleration is constant, and so we can use the 1D constant acceleration formula   
2 2

0 0v v 2a(x x )   .   So we have 

 

 vf
2
  vi

2
  =  2a(xf – xi)  =  2(Fnet /m)(x)     [ using a = Fnet /m ] 

 

KE  =  KEf – KEi  =  (1/2)mvf
2
  (1/2)mvi

2
     =  (1/2)m 2(Fnet /m)(x)   = +Fnet x = Wnet .  

Done! 

 

Energy was transferred from the surroundings into the KE of the book.  We have shown that the 

Work-KE Theorem is true in this one case, but it turns out to be always true whenever the object 

can be treated as a single particle.  A more complete derivation is given in the Appendix to this 

chapter. 

 

Notice the Work-KE theorem holds even when friction is involved.  

 

Let’s check that the Work-KE Theorem works in a few other special cases: 

 

Example:  A book of mass m is dropped from rest and it falls a distance h.  The net force is Fgrav 

= mg.  The work done by the net force is Wnet  =  +mg |y|   =  mgh.   To compute the change in 

KE, we need the final velocity:KE  =  KEf – KEi  =  KEf  – 0 =  (1/2)mvf
2
.  The final velocity 

we get from our constant acceleration formula: vf
2
 = vi

2
 + 2a(yf – yi)  =  0  – 2g(y) = +2gh 

(notice y is negative).  So (1/2)mvf
2

  = (1/2) m 2 g |y|  = mgh.  Therefore, Wnet = KE 

 

In the next chapter, we will define potential energy (PE).  As the book falls, energy was 

transferred from the PE of the earth-book system into the KE of the book.  The amount of energy 

transferred is Wgrav  = mgh.   

 

Example:  A book is lifted a height h by an external force (my hand) at constant velocity.  Here, 

Fnet  = 0 (since constant velocity), so Wnet = 0.  The book does not speed up or slow down, so 

KE = 0.  Hence, Wnet = KE 

 

The Work-KE Theorem provides a short-cut in some problems: 

x  

Fext  

vi  vf 

m Ffric 
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Example: A car of mass m is moving with speed v.  The driver applies the brakes and the car 

skids to a stop.  What was the magnitude of the work done by the friction force on the tires? 

 
At first glance, it seems that we don't have enough info to answer the question.  We don't know 

the coefficient of kinetic friction K and we don't know how far (x) the car skidded.  So how 

are we to compute the work done by friction |Wfric | =  Ffricx| =  Kx| ?    

 

Easy with the Work-KE Theorem: Here Fnet  = Ffric  so  |Wfric | =  |Wnet | = |KE| = (1/2) m v
2

.   

 

Another question: If the initial speed v of the car is doubled, how much further does the car 

skid?   

 

Answer:  Begin with  |Wfric | = |Wnet | =  |KE| = (1/2) m v
2
   

 

The work done is |Wfric| = Ffricx =  Kx = K mg x.    So we have …  

(1/2) m v
2
 = K mg x  ,  

2

K

v
x

2 g
 


.  Since x  v

2
 , if the v is doubled, the car skids 4 

times as far.  Notice that the distance that the car skids is independent of the mass of the car.  

This is a very useful fact in car crash investigations.  Often, the investigator can estimate the 

speed of a car from the length of the skid mark, without needing to know anything about the car. 

 

General definition of work. 

Our earlier definition of work done by a force, FW F r   , only applies if the force is 

constant and the path is a straight line.  What if the path is curvy and/or the force is not constant?  

Suppose the path is the curved line below and the force varies as the object moves. 

 
To compute the work done, we break the path up into a large number of very small, straight-line 

segments, and label the segments with an index i.  If the segment ri is very small, it is 

essentially straight and the force Fi is constant over that segment, so the work done over the i
th

 

segment is i i iW F r    .  The total work done over the whole path is i i

i

W F r   .  

Taking the limit as the segment lengths become infinitesimal, the sum becomes an integral and 

the work done is  

 

v 

x 

vf = 0 (car skids to stop) car 

start 

finish 

ri 

r1 
r2 

Fi 
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FW F dr   

 

Don’t let the integral sign scare you.  An integral is just a sum (the integral sign looks like an S 

for “sum”).  The sum of little bits of work is the total work.  An example of a force that varies 

with position is the force exerted by a stretched spring. 

 

Springs   
We want to derive an expression for the work done to stretch or compress a spring, so we take a 

little detour and talk about springs.   

 

Most springs obey "Hooke's Law" which says that the force exerted by a spring is proportional to 

the displacement from the equilibrium (relaxed) position.   

 

 

 

 x is the amount that the spring is 

stretched (+) or compressed (–) 

 

| Fspring |  | x | 

 

double | x |    double | Fspring | 

 

 

Hooke's “Law” :      Fspring = – k x   
 

k = spring constant = measure of stiffness,    big k  stiff spring,   small k  floppy spring 

 

units of k = [k] =  [F]/[x] =  N/m (newtons per meter) 

 

Why the (–) sign in Hooke's Law?  It's because the direction of the force exerted by the spring is 

opposite direction of displacement.  When displacement is to the right (x +), the spring pulls 

back to the left (F  –); when x is (–), F is (+). 

 

Why Hooke's "Law" in quotes?  Because it is not really a law.  It is only approximately true for 

most springs as long as the extension is not too great.  If a spring is stretched past its "elastic 

limit", the spring will permanently deform, and it will not obey Hooke's Law.   

 

Incidentally, Robert Hooke (1635-1703) was a brilliant English scientist, a contemporary of 

Newton’s, and Newton hated him.  On about two occasions, Hooke figured out something at 

about the same time or earlier than Newton.  One example is “Hooke’s Law”.  Newton was very 

insecure, intellectually, and he got furious when anyone figured out something before he did. 

 

We now show that the work done by an external force Fext (such as the force from my hand) to 

stretch or compress a spring by an amount x is given by  

x  

relaxed: x = 0  

stretched: x = (+)  

compressed: x = (–)  

0 
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To hold the spring stretched a 

displacement x, I have to exert an external force  Fext = +k x .  To 

slowly stretch the spring from xi = 0 to xf , I have to apply a force that 

increases from zero to kxf.  Our general definition of work in 1D is  

FW Fdx  .  

 
xf x

x
2 21 1

ext ext 2 2
0

xi 0

W F dx k x dx k x k x            Done. 

 

If you don’t yet know how to do integrals, here’s another way of solving for the work.  As the 

spring is stretched, the force varies linearly from zero (unstretched) to +kx  (fully stretched).  The 

average force applied is 
1
2 k x .   We can pretend the force is constant, equal to the average 

force, and the work done is 
21 1

ext 2 2W force distance = k x x k x    . 

 

Notice that the work done by the external force is always positive, regardless of whether the 

spring is stretched (x positive) or compressed (x negative). 

 

 

 

Appendix. 

 

Derivation of Work-Kinetic Energy Theorem in 1D: 

 

This derivation requires some knowledge of integrals. 

 

Working in 1D, I can drop the arrows over the vectors, since direction can be represented by a 

sign in 1D.   Starting with the general definition of work done by a force and using Fnet = ma and 

a = dv/dt, we have  

 

net net

dv
W F dx m a dx m dx

dt
 

 

The velocity v can be regarded as a function of x, and x is a function of t:  v = v[x(t)].  By the 

chain rule, 
dv dv dx

dt dx dt
.  Multiplying both sides by dx gives 

dv dx
dx dv

dt dt
,  so we have 

 

Fspring Fext  

x  
0 

2

ext

1
W k x

2

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net

 v2

2 2 2

2 1

 v1

dv dx
W m dx m dv

dt dt

1 1 1
m v dv m v m v m v KE

2 2 2

 


