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Faraday's Law:  
 

Gauss' law tells us that "charges create E fields".  
And we know that a steady E field pushes charges around, makes currents flow.  
We've used the word "EMF" for this occasionally, an EMF is any voltage 
difference capable of generating electric currents.   
Think of EMF = ΔV  (=E Δx)  
(Note:  batteries have an EMF, but resistors do NOT.  Even though an R can have 
a voltage difference across it, it is not generating it! Resistors don't make currents 
spontaneously flow, batteries can.)  
 
Michael Faraday, a British physicist (at the same time as Joseph Henry, an 
American, but Faraday published first) about 180 years ago (1831) discovered a 
remarkable new property of nature: 
 

Changing magnetic fields (not steady ones) can make EMF's. 
In other words, a time-varying B field can make currents flow. 
 
Imagine a wire loop sitting in a B field, like this: 
 
If the B field is steady then there is NO 
CURRENT, the bulb is dark.   
 

But, if the B field changes with time, the bulb 
lights up, a current flows through that wire (!)   
 

You might do this by e.g. just moving a big 
magnet closer, or farther away (yes, weakening the B field is still a change)...  or 
move the coil itself closer (or farther) from the magnet face.  
 
There's no battery here, no external voltage source, but the bulb still glows! This 
effect is surprising, it's something new... 
 
Faraday spent only 10 days of (intensive) work on these experiments, but they 
changed the world radically.  
This is how most of modern society's electricity is now generated!  
 
Faraday worked out an equation (Faraday's Law) which quantifies the effect (how 
much current do you get?)  
But before we can write it down, we need to first define one relevant quantity we 
haven't seen yet. 
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Imagine a B field whose field lines "cut through" ("pierce") a 
loop.   Define θ as the angle between B and the "normal" or 
"perpendicular" direction to the loop.   
We will now define a new quantity, the magnetic flux 
through the loop, as 
 

Magnetic Flux, or  Φ = B⊥ A = B A cosθ  
 

B⊥ is the component of B perpendicular to the loop: B⊥  = B cosθ.   
The UNIT of magnetic flux = [Φ] = T m^2 = Weber = Wb. 
If B is not uniform, we find the flux by adding it up over little patches of area, 

! 

"
B

= B # dA$$ ... 
 

Go back to Ch 24 where we defined electric flux, it's all pretty much the same! 

Examples of calculating magnetic flux: 
 
Here (picture to the left) Φ = B A,  
because B is perpendicular to the area.  (θ=0) 
 
 

Here (picture to the right), Φ =0, because B is parallel to the 
area.  (θ=90. )   No flux: the B field lines don't  
"pierce" this loop, they "skim" past it... 

 
Here, (picture to the left), Φ = B A cosθ.  The flux is 
reduced a bit because it's not perfectly perpendicular. 
 
Just like Electric flux - it tells the number of B field lines 
"poking through" a small loop 
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Faraday’s Law:   The induced EMF in any loop is 
 

 EMF =  - dΦ/ dt .        
(Φ is magnetic flux, t is time, this is the rate of change of flux through an area) 
• If you put a loop into a B field, and then change the flux through that loop over 
time, there will be an EMF (basically, a voltage difference) induced.  
Current flows, if you have a conducting loop.  
• EMF is a lot like the battery's voltage, except it's not "localized", it's distributed 
around the loop we're considering. If you want a formal definition of EMF, it's 

! 

EMF = E " dL# , which looks a lot like 

! 

"V = # E $ dL%  
• The formula says it is only the change in flux through the loop that matters. A 
huge B field (lots of flux) does NOT make the EMF, it’s the change in B with 
time that does the trick. 
• This equation has not been derived - it’s just an experimental fact! 
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It’s a mess, but it works out. The formula gives the correct units.) 
 

• If you were to “pile up” N loops on top of each other, 
the effective flux will be increased by a factor of N, the 
formula becomes EMF=-NdΦ/dt. (Do you see why?)  
 

•  Since Φ = B A cosθ, you can change the flux in 
many ways: you could change B,  or area, or the angle 
between B and the loop. 
 

Example: B is perp. to this loop, θ=0, as shown. 
(Remember, θ is the angle from the normal)  
The area is A= (0.1m)^2 = .01 m^2 
Suppose B is 1 Tesla, as shown, and then you turn it off, 
taking a time of 2 seconds to do so... 
 

Faraday’s law says there will be an “induced EMF”, or voltage, around the loop, 
|EMF|=|ΔΦ/Δt| = [ (1 T * 0.01 m^2) cos(0) - 0  / (2 sec)   =  .005 V 
 

If you had N=1000 coils (loops) of wire, all stacked (coiled) up around that same 
perimeter, you’d get |EMF|=5 V, enough to light up a small bulb (or perhaps 
warm up the wire of the loop). But remember, you’d only have this voltage for 
those 2 seconds while B was changing! Once B reaches 0 (and presumably stays 
there), there is no more change, and so |EMF| goes back to 0.   
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What’s that minus sign about in Faraday’s law? 
Don’t plug it in blindly - it’s only there as a reminder, you must figure out the 
direction of the induced current flow, or voltage difference (the direction of the 
EMF) by Lenz’s Law: 

• Induced EMF tries to cause current to flow. If current flows, it will create a new 
(usually small) B field of its own, which we will call B(induced).  (You’ll need to 
remember what I've called "RHR #1b": i.e. how current in a loop produces B)  

• I will call the original or “outside” field:  B(external)  
The direction of B(induced) opposes the change in the original B. 
\Note: B(induced) does NOT necessarily oppose B(external)(!!)   
It is opposite the CHANGE of B(external) (or more accurately, the change of  
flux).  B is a vector, you really have to think about the direction of the change of 
that vector.... 
 

Lenz’s law is a mouthful! It tells you the direction that the induced current will 
flow. Nature creates a B(induced) to fight the change. 

 
Example:   Consider a B(ext) that is up, and pierces a wire 
loop, as shown.  It might be caused by a big old magnet or 
something.  
If B(ext) stays constant, there is no change, and so  
no current spontaneously flows around the loop.   
 

If B(ext) starts to decrease, nature will try to fight that change. 
(Remember, if an “up vector” is decreasing, the change is DOWN) 
Lenz’s laws says a current will flow (or try to flow) to induce an upwards B field, 
to try to keep things as they were.  
B(induced) may be small: it probably won’t succeed, but it tries.  
The direction of induced current is shown to the left. 

B(induced) points up, opposite the change in B(ext).  (Here, this 
just happens to be the same direction as B(ext) was originally, but 
that’s irrelevant, it's a coincidence here.)   

 
If B(ext) instead starts to increase with time,  
then to fight that change you will induce a downward B, as 
shown. (You should look at Knight Fig 33-23 and try to figure out 
which way i should go. It takes practice to get Lenz’s law.) 
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Example:  A metal bar slides along conducting 
metal tracks in a uniform B field pointing into the 
page. 
 
Push the bar to the left (as shown), and consider the 
conducting loop consisting of rail + slider. 
 
The area inside that loop is increasing, and so flux 
through the loop (B*A) is also increasing.  (A = L*x, and x is increasing with 
time)  
 

|EMF| = | dΦ/dt | = |B dA / dt |   = B L dx / dt = B Lv 
(Because v = dx / dt is the speed of the sliding bar) 
That means current flows around the loop, by Faraday’s law. 
If you put a light bulb somewhere in that circuit, it’d glow. 
The bigger B is (or the faster you slide the rod), the more current. 
 
Now, what direction will the current flow, CW or CCW?  
Lenz’s law will tell us! 
 

The external flux is into the page and increasing with time. So the change in flux 
is into the page. (Do you see that?)  
Lenz’s law says current will start to flow to fight the change.   
 

That current will induce a new B that points out  of the page.   
By RHR #1b, that means  CCW. 
 
Note:  It’s not that B(induced) points out of the page because B(ext) is into the 
page. That’s a coincidence. It’s opposite the CHANGE in flux, not oppose the 
direction of flux.  
E.g., If instead you push the slider to the right, B(ext) is of course the same, but 
now the flux is decreasing with time, that’s opposite: the B(induced) will also be 
opposite, i.e. the current flows CW!! 
 

Knight Fig 33-7  through 9 are similar. Try to figure out the direction of the 
induced current there, for yourself. 
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There is a totally different way, kind of “previous chapter style”, to reach the same 
conclusion about the direction of induced current in the previous example.  
 

Consider a small + test charge sitting somewhere in 
the slider. It (and of course  every other atom, 
electron, etc. too ) moves along with the slider to the 
left, with velocity v.  
It sits in a uniform B field. That means it feels a force 
(F = q v B), and the direction is given by RHR #2, try 
it yourself, convince yourself it is DOWN.  
 
But it’s a test charge in a conductor - it’s free to move. What that 
means is the B field thus forces test charges down the slider, which 
means a current I down -  exactly the direction we got before (from 
Lenz’s law)  
Cool - a rather different way of looking at it, but the same result. 
 

Comment: We just saw there is an (induced) current flowing in the slider, and this 
current sits in a B field. Any current in a B field will feel a force F = ILB! 
Work out the direction for yourself (!), using RHR #2.  
I claim in this example is to the right.  That means the B field tries to slow down 
the slider. It’s kind of like magnetic friction.  If you did not continue to push that 
slider to the left,  the induced current feels this force that would slow the slider 
down to a halt.   We call any induced current like this, caused by conductors 
moving in magnetic fields, eddy currents (maybe because they look a little like 
water eddy’s in a river?)   
 

Eddy currents always cause slowing or “braking” forces. They behave in some 
ways like magnetic friction. This effect is used to slow down some kinds of trains 
-  it’s a “retarding” force proportional to velocity. By changing the resistance in 
the rest of the track you can change the magnitude of the current, hence the force - 
and it’s easy to control electronically.  Eddy currents have many other industrial 
applications, including stopping trains (or the new hybrid electric cars), or in 
detecting coins in coin vending machines!  
 

Final note:  Suppose the sliding rode had resistance R (and the rest of the rail had 
negligible resistance). Then: 
Total power dissipated here (in resistor) is (EMF^2/R) = B^2 L^2 v^2 / R 
Meanwhile, you have to apply a force to make the rod keep moving, which we 
just argued was F=ILB. So you must do work/time = F*distance/time = ILB v. 
But since I = EMF/R = BLv/r.  So you supply power B^2L^2v^2/R, which is 
precisely what the resistor is "burning up". You put it in, the resistor dissipates it! 

 x

 x

 x

 x

 v

  B

  +
 x

 x

 x

 x

 x

 x

 x

 x

  I



33-7 (SJP, Phys 1120) 

Different example:  Put a coil of metal into a fixed B(external) 

We’ve seen this setup before, in Ch. 29. (Remember, if you run a current I 
through that coil of wire, RHR #2 says there are forces that twist the loop. That’s a 
MOTOR, putting current into it causes mechanical motion.) 
 

But you can also do the opposite:  suppose you (or a waterfall, or a steam 
engine...) mechanically force the loop to start to rotate.  What happens then? 

 
The flux through the coil,  
Φ = B A cosθ, is changing, because θ is 
now steadily changing. 
 
 
 
 

Faraday’s law says  
|EMF| = | dΦ/ dt |  =  B A dcosθ/ dt.    

 (B and A are both constant!)  
 

There is an induced EMF, a current spontaneously starts to flow in the loop.  
If you have wires leading out from the loop (like in the picture of the motor in Ch. 
20) current flows to the outside world.  
 
This is an electrical generator.  It’s just like a motor, only opposite:  mechanical 
motion causes current. (You can even use the same apparatus either way, as a 
motor or as a generator.)   
 
If you rotate it steadily, i.e. if θ = ωt,  then we can take the derivative, and get 
EMF = -N(coils)* B A ω  sin ωt 
So the resulting EMF varies with time, sinusoidally.    
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What is the direction of the current in the last example? 
At the moment shown, the flux through the coil is to the right, 
and it is increasing. 
 
Think about this (it’s 3-D spatial imagery) 
The B field isn’t changing, but it’s “piercing” the loop more 
and more efficiently, around the moment shown.   
Let me exaggerate to convince you:   

 
 
 
The flux is increasing to the right.  
 
 
 
 

 
Lenz’ law says the induced current will fight this change, i.e. 
you will create a B(induced) that must point to the left.  
 By RHR #1b,  
that means the current at the moment in question flows 
around the loop as shown here.  
 
But now let’s look again just a little later... 

The flux is still, at this moment, to the right. But, 
now it is decreasing with time. (In a moment, there 
won’t be any flux, when the loop is again parallel to 
the B field)  
 

If flux is “right but decreasing”, that means the change is leftwards. 
 

To fight the change, you need to make a current which will 
make a “rightwards” B field, like this: 
 
Notice how the current has flipped its direction.  
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Bottom line:  You do work on the coil to rotate it. In return, you get an electrical 
current out. This is precisely how our big power plants work - large coils being 
rotated in a big fixed B field (or sometimes, the magnet gets rotated around a fixed 
coil.)  
 
The current is flipping direction each partial rotation of the coil (see the previous 
page for this story).  If you graph current coming out of the coil as a function of 
time, it looks like this:  I=EMF/R = -N(coils)*(B A/R) ω  sin ωt 

 
 
The frequency is exactly the same as 
the mechanical frequency of the 
rotating loop. In the US, that means 
you must turn that loop  
60 times/sec, or 60 Hz.  
 
 
 
 

Suppose you stopped pushing.  You might imagine that if there was no friction, 
the loop would keep turning, giving you “free electricity”. No such luck. There is 
still a current flowing, and this current is in an external B field, so it feels a force. 
RHR #2 tells the direction (work it out, looking at the pictures on the previous 
pages.) 
At all times, the resulting forces make a torque that acts to slow down the loop. 
This is the “eddy currents” story again. Induced currents are caused by conductors 
moving in a B field. They will always act to slow things down.  
 
This is a law of nature. If the forces ever acted in the other direction, i.e. to speed 
things up, you’d be getting something for nothing, violating conservation of 
energy. (Lenz’s law, that minus sign in Faraday’s law, is basically the statement of 
conservation of energy) 
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Induced Electric Fields: 
 
EMF, like any "voltage difference", tells you about work per charge, or 

! 

EMF = E " dL# .  Which means that we can rewrite Faraday's law as: 

! 

E " dL = #
d$

B

dt
%

 =  –
d

dt
B " dA%%( )

 

(This reminds me a little of Ampere's law, 

! 

B " dL = #µ
0
I  =  #$ µ

0

dq

dt
 , something you 

might think about... but not for now) 
Faraday's law says "changing B (in time) creates E fields"!   
(Once you have E fields, they can drive currents, which is what we've been 
looking at this whole chapter)  
Example: Consider a solenoid which 
has a uniform B field inside. Suppose 
you increase the current through the 
solenoid, so B inside changes with 
time.  
Now look outside the solenoid, (e.g at 
point P, shown).  where there is no B 
field at all, ever.   
 
Faraday's law says if you follow the 
dashed loop, and integrate E . dL, you 
will not get zero, you get 
 

! 

E " dL =#  –
d

dt
B " dA##( )   = $%a2 dB

dt
.  This says that although B is (always!) zero out 

there, the changing B field inside the solenoid creates a nonzero E field out there. 
The E field runs in "circles" around the solenoid. The direction will depend on 
whether B is increasing or decreasing. (In the case shown, if B is increasing, Lenz' 
law tells us that the E field points counterclockwise around the loop shown. 
Convince yourself!)  
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In this last example, since it's totally symmetric, E must be the same all the way 
around the loop at some fixed radius r, which means we can do the "line integral" 
on the left side of the equation on the last page, to get 
E (2 πr) = π a^2 dB/dt.   
But recall B(solenoid) = µ0 n I  (where n is the number of turns per unit length) 
so we have 
E (2 πr) = π a^2 µ0 n dI/dt,   or  
E = (µ0 n a^2/ 2 r)  dI/dt. 
(CCW in the case shown. If I was decreasing, it'd be CW) 
 
In general, E that arises from Gauss' law (i.e. from static charges) "diverges" from 
the charges, whereas E that arises from Faraday's law (i.e. from changing 
magnetic flux) tends to "run rings" around the changing flux.  
 
This makes for "non-conservative" forces, because if you were to allow a little 
charge to run around that ring, there would be a net work done on it. That is, the 
work done on the charge as it moves from place to place depends on the path it 
takes!  
 It also means that, although "electrical potential" (which is potential 
energy/charge, or voltage) is perfectly well defined (and very useful!) for static 
charge configurations, it really isn't useful or even meaningful when you have 
time varying magnetic fields. That's why we've starting introducing the term EMF 
in this chapter.  
 
 
 
(For notes on inductors, the last part of this chapter, you'll have to see my 
handwritten notes) 


