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Gauss's Law 

 
Gauss's Law is one of the 4 fundamental laws of electricity and 

magnetism called Maxwell's Equations.  Gauss's law relates 

charges and electric fields in a subtle and powerful way, but 

before we can write down Gauss's Law, we need to introduce a 

new concept: the electric flux  through a surface.   

 

Consider an imaginary surface which cuts across some E-field 

lines.  We say that there is some electric flux through this surface.  To make the notion of 

flux precise, we must first define a surface vector. 

 

Definition: surface vector A = ˆA An , associated with a flat surface of area A.   

Magnitude of vector A = area A of surface.   

Direction of vector A = direction perpendicular (normal) to 

surface = direction of unit normal n̂ . 

 

Notice that there is an ambiguity in the direction n̂ .  Every 

flat surface has two perpendicular directions. 

 

 

 

The electric flux  through a surface A is defined as 

 

     E A EAcos            (for E = constant, surface flat ) 

 

The flux  has the following geometrical interpretation:  

| flux |   the number of electric field lines crossing the surface.   

 

Think of the E-field lines as rain flowing threw an open window of area A.  The flux is a 

measure of the amount of rain flowing through the window.  To get a big flux, you need a 

large E, a large A, and you need the area perpendicular to the E-field vector, which 

means the area vector A is parallel to E.  (In the rain analogy, you need the window to be 

facing the rain direction.) 
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(A cos is the projection of the area A 

onto the plane perpendicular to E.  The 

plane perpendicular to E is the area which 

"faces the rain".  Only the area facing the 

rain contributes to the flux. 

 

 

 

 

Let’s consider this flux business in a little more detail. In the diagram below, we have a 

constant electric field E, passing through surface 1, represented by vector A, tilted at 

angle .  [We use bold font A for vectors.] This tilted surface 1 has area | A |  = A = LW.  

The projection of this surface 1 onto the plane perpendicular to the E-field is surface 2, 

which has an area that we call A (for area of surface perpendicular to direction of E).  

The area of this plane, this surface 2, is  

A = L W = LcosW = A cos.  So we have A = A cos. 

 

Now we are going to show that the flux E A   through a surface A is proportional to 

the number of field lines passing through the surface. Recall that, from the definition of a 

field line diagram, the magnitude of the E-field is proportional to the density of the lines: 

| E | E (# field lines)/A N / A      (N is the number of field lines through the area 

A).  So, we have N E A  .  Now, we showed above that  A Acos   , so we 

have N E A E Acos E A      .  Done! The number N of field lines through a 

surface is proportional to the flux E A  . 
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We can now see that, since the same number of E-field lines pass through both surfaces 1 

and 2, they must have the same magnitude flux.  The math shows the same thing: For 

surface 1, 1 EAcos   .  For surface 2, 2 EA EAcos    .   

 

Now, the formula E A   is a special case formula: it only works if the surface is flat 

and the E-field is constant.  If the E-field varies with position and/or the surface is not 

flat, we need a more general definition of flux: 

 

       E da "surface integral of "    E  

 

 
 

To understand a surface integral, do this: in your imagination, break the total surface up 

into many little segments, labeled with an index i.  The surface vector of segment i is ida .   

If the segment is very, very tiny, it is effectively flat and the E-field is constant over that 

tiny surface, so we can use our special case formula  E A    . 

The flux through segment i is therefore  i i iE da   .   (Ei  is the field at the segment i) 

The total flux is the sum:  
i i

i

E da E da       

(In the limit that the segments become infinitesimal, there are an infinite number of 

segments and the sum becomes an integral.) 

 

In general, computing surface integral E da can be extremely messy.   So why do we 

care about this thing called the electric flux?  The electric flux is related to charge by 

Gauss's Law. 

E E 

da 
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imaginary spherical surface S, 

radius r 

r 

+ 

Gauss's Law        (the 1
st
 of 4 Maxwell's Equations) 

 

enclosed

0

q
E da 

      

 In words, the electric flux through any closed surface S is a constant (1/0) times the total 

charge inside S. 

 

                 E da  surface integral  closed  

 

 

A surface is closed if it has no edges, like a sphere.  For a 

closed surface, the direction of da  is always the outward 

normal. 

 

The constant 0 is related to k by 
0

1
k

4



. 

1 2 1 2
coul 2 2

0

k q q q q1
F

r 4 r
 


 

12

0 8.85 10    (SI units) 

 

Gauss' Law can be derived from Coulomb's Law if the charges are stationary, but Gauss's 

Law is more general than Coulomb's Law.  Coulomb's Law is only true if the charges are 

stationary.  Gauss's Law is always true, whether or not the charges are moving. 

 

It is easy to show that Gauss's Law is consistent with Coulomb's Law.  From Coulomb's 

Law, the E-field of a point charge is
2 2

0

k Q 1 Q
E

r 4 r
 


 .  We get the same result by 

applying Gauss's Law: 

 

 

(since E is parallel to da on S) 

 

(since E is constant on S) 

 

 

 

(says Mr. Gauss) 

 

Solving for E, we have 
2

0

1 Q
E

4 r



  .  Done. 

 

"closed" 
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da 
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When viewed in terms of field lines, Gauss's Law is almost obvious (after a while).  

Recall that flux is proportional to the number of field lines passing through the surface.  

Notice also that flux can be positive or negative depending on the angle  between the E-

field vector and the area vector. Where the field lines exit a closed surface, the flux there 

is positive; where the field lines enter a closed surface, the flux there is negative. 

 

So the total flux through a closed surface is 

proportional to 

  [(# field lines exiting) – (# field lines entering)] 

 

If a closed surface S encloses no charges, then the 

number of lines entering must equal the number of 

lines exiting, since there are no charges inside for 

the field lines to stop or start on. 

 

 

 

 

 

S

E da 0    

 

 

 

 

So only charges inside the surface can contribute to the flux through the surface.  Positive 

charges inside produce positive flux; negative charges produce negative flux. 

 

The net flux is due only to the net charge inside:    
enclosed

0

q
E da 

 . 

 

Using Gauss's Law to solve for the E-field 

 
Gauss's Law is always true (it's a LAW).  But it is not always useful.  Only in situations 

with very high symmetry is it easy to compute the flux integral E da .  In these few 

cases of high symmetry, we can use Gauss's Law to compute the E-field. 

+ – 

da 

da 

E (exiting S) 

E (entering S) 



imaginary surface S 

E 

S 
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Example of Spherical Symmetry: 

 

Compute E-field everywhere inside a uniformly-charged spherical shell. 

 

By symmetry, E must be radial (along a radius), 

so E = E(r).  We choose an imaginary surface S 

concentric with and inside the charged sphere. 

 

Since the E-field is radial and the surface vector 

da on S is also radial, we have E da Eda  .  

(The dot product of the parallel vectors is just the 

product of the magnitudes.)   So we have  

 

 

 

where A is the area of surface S. We are able to take E outside the integral only because 

E = E(r) and so E = constant on the surface S.   

Gauss's Law says enc

0S

q
E da 0  

 , so we have E A = 0 ,  E = 0. 

Conclusion:  E = 0  everywhere inside a hollow uniform sphere of charge. 

 

If you draw the spherical gaussian surface S outside the charged shell, you can quickly 

show that 
2

0

1 Q
ˆE r

4 r



 everywhere outside the shell.  The E-field outside a uniform 

shell of charge, or outside any spherically symmetric charge distribution, is exactly the 

same as if all the charge was concentrated at the center. 

 

Example of Cylindrical Symmetry: 

Compute E-field around an infinite line of charge with charge per length = .  

 
 

By symmetry, E is in the cylindrically radial direction and E = E(r). 

 

gaussian surface S, radius r, length L 

r 

 + + + + + + + + + + + + + + + + + + + + + + + + + + + 

+ + + + + 

 

 

 

 



L 

E is in plane  to line 

 L 

r 

area of curved side = A =  2 r L 

S 

+ 

+ + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 
+ 

Q 

S

E da Eda E da E A ,     
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side

S ends side side

0

E da E da E da E da EA

E (2 r L)

      

 

   
 

 

The charge inside the gaussian surface is (charge/length)length =  L, so Gauss gives 

gives  

enc

0 0 0S

q L
E da E (2 r L ) E

2 r

 
      

  
 

Example of Planar Symmetry: 

 

Compute the E-field near an infinite plane of charge with 
Q

charge per area
A

   . 

 

By symmetry, the E-field must be perpendicular to the plane (either away or towards).  

 

 

 
 

 

On end caps, E da Eda   

On curved side, E da 0   

enc

0 0

q A
E da 2EA


   

   

0

E
2





  = constant, regardless of position! 

+ 
+ 

+ 

+ 
+ 

+ 

+ 



E 

gaussian surface 

end cap area A 

da 

da 

da 

charge enclosed
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Conductors in Electrostatic Equilibrium 
 

"Electrostatic equilibrium" means that all charges are stationary; so the net force on every 

charge must be zero (otherwise the charge would be accelerating). 

 

Useful facts about metals (conductors) in electrostatic equilibrium: 

 

 The electric field in the interior of a metal must be zero.   

 

The E-field must be zero in the interior, otherwise the conduction electrons in the metal 

would feel a force F =  q E = –e E and would move in response.  Electrons in motion 

would mean we are not in electrostatic equilibrium. In a conductor, the charges arrange 

themselves so the E = 0 everywhere in the interior (otherwise, the charges are not yet in 

equilibrium and continue to move). 

 

  The interior of a conductor in equilibrium can have no net charge (electrons and 

protons must have equal density). 

 

Proof from Gauss's Law: consider any closed surface within the conductor,  

 

S

enclosed

E da 0 (since E = 0)

q 0

 

 


 

 

 

 

 

 

 Any net charge on the conductor resides only on the surface of the conductor. 

S 

conductor 

uniform plane of charge 

(seen edge-on) 

E = constant  

E = constant  
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We just showed that no net charge can exist in the interior, so it must be on the surface. 

 

 The electric field must be perpendicular to the surface of the conductor. 

 

The E-field must be perpendicular to the surface (in electrostatic equilibrium), otherwise 

the component of the E-field along the surface would push electrons along the surface 

causing movement of charges (and we would not be in equilibrium). 

 

On the surface of metal, if Ex was not zero, there 

would be a force Fx = q Ex = –e Ex on electrons in the 

metal pushing them along the surface. 

 

 

 

 

 

 
 

 The E-field near the charged surface of the conductor has magnitude 
0

E





.  

 [Note: this is similar, but different than the formula for the field near a plane of charge: 

0

E
2





. ] 

 

Proof by Gauss's Law: 

enc

0 0 0

q A
E da E A E

 
     

            

A metal in electrostatic equilibrium 

E = 0 inside 

net charge on 

surface only 

E-field  

surface 

air 

metal 

   = charge per area 
+ + + + + + + + + + + + + + + + + +  

 

 

 

 gaussian "pillbox" S,  A = area of one cap 

metal 

E 

Ex 
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Why not E da 2E A  ?    Because E = 0 inside metal 

 
 

But now, a very puzzling situation has arisen !  We proved before that an infinite plane of 

charge creates a uniform field 
0

E
2





.  But now we have also proved that a plane of 

charge on the surface of a metal makes a field 
0

E





.    

 
How can both be correct? 

The  E-field near the surface of a metal is not only due to the charges on that nearby 

surface. The E-field is always due to all charges, including charges on far-away surfaces! 
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The charges all arrange themselves so that  

 

 E = 0 inside the metal 

 

0

E





 just outside metal 

surface 1 surface 2 

+  

+  

+  
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+  
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(Assume that the surfaces on the top and bottom are small 

and far away so that Etot is due to surfaces 1 and 2 only.) 

Metal slab with 

net positive 

charge. 

tot 1 2

0 0 0

E E E
2 2

  
    

  
 


