```
A student in }1120\mathrm{ emailed me to ask how much extra he
should expect to pay on his electric bill when he strings up a
standard 1-strand box of icicle holiday lights outside his
house. (total, cumulative cost)?
Try to make a real estimate, don't just guess!
Energy in Colorado costs about 10¢/kW hr.
A: Less than 1 cent
B: Between }1\mathrm{ cent and }10\mathrm{ cents
C: Between $.10 and $1.00
D:Between $1.00 and $10.00
E:More than $10.00
50-100 Watts? (Like ONE bulb). }12\mathrm{ hrs/day? }30\mathrm{ days?
~100 W * 10 hrs/day * 30 days = 30,000 W*hrs = 30 kW hrs.
#$3
(for }100\mathrm{ million Joules! Energy is cheap...)
```


Welcome back!!

CAPA \#13 is due Friday
New online participation survey is up!
Pretest tonight (and Tut hw for tomorrow)
Reading: catch up if you're behind! E.g. 35.6 (1st 2 pp)
(We'll finish up Ch. 33 this week -all sections, including 33.6)
Last: Transformers and Induction
Today: Inductors in circuits
Next: AC circuits

Inductor = (coil of wire)

Important fact: Magnetic Flux Φ_{B} is proportional to the current making the Φ_{B}

All our equations for B -fields show that $\mathrm{B} \alpha \mathrm{i}$

$$
d \stackrel{\rightharpoonup}{B}=\frac{\mu_{0} i}{4 \pi} \frac{d \stackrel{\rightharpoonup}{l} \times \hat{r}}{r^{2}} \quad \oint \vec{B} \cdot d \vec{l}=\mu_{0} i_{t h r u}
$$

Biot-Savart
Ampere
\qquad

Flux $\Phi_{B} \propto B \propto i$

Flux $\Phi_{B} \propto i$
Assumes leaving everything else the same.

If we double the current i , we will double the magnetic flux through any surface.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Self-Inductance (L) of a coil of wire

$$
\Phi_{B} \equiv L i
$$

$$
L \equiv \frac{\Phi_{B}}{i} \quad \begin{aligned}
& \text { This equation defines self-inductance. } \\
& \begin{array}{l}
\text { Note that since } \Phi_{\mathrm{B}} \alpha \text { i, } \mathrm{L} \text { must be } \\
\text { independent of the current } \mathrm{i} .
\end{array}
\end{aligned}
$$

\qquad
\qquad

L has units [L$]=$ [Tesla meter${ }^{2}$]/[Amperes] New unit for inductance $=$ [Henry].

\qquad
\qquad
\qquad
\qquad

An inductor is just a coil of wire.

The Magnetic Flux created by the coil, through the coil itself:

$$
\Phi_{B}=\oint \vec{B} \cdot d \vec{A}
$$

This is quite hard to calculate for a single loop. Earlier we calculated B at the center, but it varies over the area.

Inductor 1 consists of a single loop of wire. Inductor 2 is identical to 1 except it has two loops on top of each other. How do the self-inductances of the two loops compare?
A) $L_{2}=2 L_{1}$
B) $\mathrm{L}_{2}>2 \mathrm{~L}_{1}$
C) $L_{2}<2 L_{1}$

HINT 1: What is the B field at the center of coil 2, B2, compared to the field in the center of coil 1 ? HINT 2: inductance $L=\Phi($ total $) / /$

Answer: $L 2>2 L 1$, in fact $L 2$ is roughly $4 L 1$!
Recall $L=\Phi / I$. When N doubles => B doubles.
Φ (each loop) doubles (because B is doubled)
But $\Phi($ tot $)=2 \Phi($ each loop), so double*double $=4$ times!

Consider a simpler case of a solenoid

$$
\left|\vec{B}_{\text {inside }}\right|=\mu_{0} n i=\mu_{0} \frac{N}{L^{\prime}} i
$$

Recall that the B-field inside a solenoid is uniform! \qquad
$\mathrm{N}=$ number of loops L' = length of solenoid * Be careful with symbol L!

Clicker Question

Two long solenoids, each of inductance L, are connected together to form a single very long solenoid of inductance
$\mathrm{L}_{\text {total }}$ What is $\mathrm{L}_{\text {total }}$?

```
A) 2L
B) 4L
C) 8L
D) none of these/don't know
```


Answer: 2 L . The inductance of a solenoid is $L=\mu_{0} A n^{2} L^{\prime}$, ($\mathrm{n}=\mathrm{N} / \mathrm{L}^{\prime}$ and L^{\prime} ' is the length.) In this case, we did not change n , but L ' (length) doubled, so L doubles.

What does inductance tell us?

$L=\frac{\Phi_{B}}{i}$
$\Phi_{B}=L i$
\qquad
$\frac{d \Phi_{B}}{d t}=L \frac{d i}{d t}$
L is independent of time
Depends only on geometry of inductor (like capacitance)

$$
\begin{array}{ll}
\frac{d \Phi_{B}}{d t}=L \frac{d i}{d t} & \quad \text { Recall Faraday's Law } \\
-\varepsilon=L \frac{d i}{d t} & \varepsilon=-\frac{d \Phi_{B}}{d t} \\
\varepsilon=-L \frac{d i}{d t} & \begin{array}{l}
\text { Changing the current in an inductor creates } \\
\text { an EMF which opposes the change in the } \\
\text { current. } \\
\text { Sometimes called "back EMF" }
\end{array} \\
\hline
\end{array}
$$

$$
\varepsilon=-L \frac{d i}{d t}
$$

It is difficult (requires big external Voltage) to change quickly the current in an inductor.

The current in an inductor cannot change instantly.
If it did (or tried to), there would be an infinite back EMF. This infinite back EMF would be fighting the change!

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What do these inductors do in circuits?

Just recall that the EMF or Voltage across an inductor is:

$$
\varepsilon=-L \frac{d i}{d t}
$$

So, when we add them to circuits, we can apply the usual Kirchhoff's Voltage Law and include the inductors.
\qquad

Consider a circuit with a battery, resistor and inductor (RL circuit)

\qquad
\qquad
\qquad
Suppose switch is in position (a) for a long time.

Consider a circuit with a battery, resistor and inductor (RL circuit)

Suppose switch is in position (a) for a long time.
In steady state (after a long time), the current will no longer be \qquad changing and thus the inductor looks like a regular wire!
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

At $t=0$, move the switch to (b).
Normally one might expect there to immediately be zero current. However, inductors don't let the current change instantly.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{array}{ll}
\frac{d i}{d t}=-\left(\frac{R}{L}\right) i & \\
i(t)=i_{0} e^{-\left(\frac{R}{L}\right) t} & \text { where } \quad i_{0}=\frac{V}{R} \\
i(t)=i_{0} e^{-t /\left(\frac{L}{R}\right)} & \begin{array}{l}
\text { Current exponentially decays with } \\
\text { Time Constant }=\tau=L / R
\end{array} \text { (units of seconds). }
\end{array}
$$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Clicker Question	The switch in the circuit below is closed at $\mathrm{t}=0$.

Hints: What is the initial current through the circuit? Given that - what is the initial voltage across the inductor?

Clicker Question	The switch in the circuit below is closed at $\mathrm{t}=0$.
	What is the initial rate of change of current di/dt in the inductor, immediately after the switch is closed? A) $0 \mathrm{~A} / \mathrm{s}$ B) $0.5 \mathrm{~A} / \mathrm{s}$ C) $1 \mathrm{~A} / \mathrm{s}$ D) $10 \mathrm{~A} / \mathrm{s}$ E) None of these.
Hints: What is th Given that - wha	he initial current through the circuit? at is the initial voltage across the inductor?

Clicker Question The switch in the circuit below is closed at $t=0$.
What is the initial rate of change of
current di/dt in the inductor,
immediately after the switch is
closed?
\qquad
\qquad
\qquad

Hints: What is the initial current through the circuit? Given that - what is the initial voltage across the inductor?

| Clicker Question | The switch in the circuit below is closed at $t=0$. |
| :--- | :--- | :--- |

Hints: What is the initial current through the circuit? Given that - what is the initial voltage across the inductor?

| Clicker Question | The switch in the circuit below is closed at $\mathrm{t}=0$. |
| :--- | :--- | :--- |
| What is the initial rate of change of | |
| current di/dt in the inductor, | |
| immediately after the switch is | |
| closed ? | |

Clicker Question	The switch in the circuit below is closed at $\mathrm{t}=0$.

	What is the initial rate of change of current di/dt in the inductor, immediately after the switch is closed?
$\mathrm{V}=0$	$\begin{array}{ll}\text { A) } 0 \mathrm{~A} / \mathrm{s} & \text { B) } 0.5 \mathrm{~A} / \mathrm{s}\end{array}$
	C) $1 \mathrm{~A} / \mathrm{s} \quad$ D) $10 \mathrm{~A} / \mathrm{s}$
	E) None of these.

Hints: What is the initial current through the circuit?
Given that - what is the initial voltage across the inductor?

Clicker Question	The switch in the circuit below is closed at $\mathrm{t}=0$.

$=$| What is the initial rate of change of |
| :--- |

Hints: What is the initial current through the circuit?
Given that - what is the initial voltage across the inductor?
Answer: I(initial) $=0$, so it must still be 0 . Thus, $\Delta \mathrm{V}$ (across R$)=0$ V (across inductor) $=\mathrm{V}$ (batt!), but also V (inductor) $=\mathrm{L}$ di/dt. So at $\mathrm{t}=0+$, di/dt $=\mathrm{V}($ batt $) / \mathrm{L}=10 \mathrm{~V} / 10 \mathrm{H}=1 \mathrm{~A} / \mathrm{s}$.

Clicker Question

An LR circuit is shown below. Initially the switch is open. At time $t=0$, the switch is closed.

After a long time, what is the current from the battery?
A) 0 A
B) 0.5 A
C) 1.0 A
D) 2.0 A
E) None of these.
C)
)

What do you think of today's "all powerpoint" format?
A) Better than usual blackboard work - let's keep it!
B) Some +'s, some -'s, it's a wash for me.
C) I prefer the usual blackboard work (with powerpoint reserved for just clicker questions) Go back!
D) No opinion, the professor should decide
E) I have something different to say about this

AC Circuits

The Voltage in your wall sockets at home is AC.
AC stands for Alternating Current, but would perhaps more appropriately be called Alternating Voltage.

Alternating $=$ Sinusoidal with time

\qquad
FIMOC

ω is the radial frequency (radians / second) f is the frequency in (cycles / second = Hertz) T is the period in (seconds), i.e. time for one cycle
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

