

Announcements

- Reading for next time: 3.1-3.4
- CAPA assignment # 2 is due Tues@11 PM.
- Written homework # 1 is due TODAY@4 in your TA's mailbox in the brown bin in the Help Room.

3

Last Lecture

Acceleration – non-zero when velocity is changing.

Recall:
$$\overline{v} = \frac{\Delta x}{\Delta t} = \frac{\text{displacement}}{\text{elapsed time}} = \text{slope of an } x \text{ vs. } t \text{ plot}$$

Similarly:
$$\overline{a} = \frac{\Delta v}{\Delta t} = \frac{\text{change in velocity}}{\text{elapsed time}} = \text{slope of a } v \text{ vs. } t \text{ plot}$$

Possible confusion: sign of acceleration.

The sign of acceleration is not necessarily the same as the sign of velocity!

/

Last Lecture

Copyright © 2005 Pearson Prentice Hall, Inc.

When velocity and acceleration are in opposite directions, we often call that deceleration.

However, in physics we always call it a negative acceleration.

$$x = x_0 + v\Delta t$$

$$v = v_0 + a\Delta t$$

You are driving your car with an initial velocity of +20 m/s. Starting at time t = 0 at position x = 0 you cause the car to have a uniform acceleration -4 m/s^2 . (How might you do that?) Its velocity at time t = 1 s will be

- A) 20 m/s
- B) 24 m/s
- C) 16 m/s $v = v_0 + at = 20 4(1) \text{ m/s} = 16 \text{ m/s}$
- D) -24 m/s
- E) Impossible, acceleration cannot be negative while velocity is positive.

$$a = \frac{\Delta v}{\Delta t} = \frac{\text{change in velocity}}{\text{elapsed time}}$$

What causes the constant acceleration downward?

The force of gravity

Assuming positive is up, between points **A** and **B**, the acceleration is

- A) Positive B) negative C) changes sign
- D) neither.

Assuming positive is up, between points **A** and **B**, the acceleration is

- A) Positive B) negative C) changes sign
- D) neither.

Assuming positive is up, between points **B** and **C**, the acceleration is

- A) Positive B) negative C) changes sign
- D) neither.

Assuming positive is up, between points **B** and **C**, the acceleration is

- A) Positive B) negative C) changes sign
- D) neither.

Constant acceleration formulae in 1D

Constant acceleration formulas (1D) (relates)

(Derived on pages 26-27 of Giancoli.)

$$v = v_0 + at$$

(a)

(b)
$$x = x_o + v_o t + (1/2) a t^2 = x_0 + \overline{v} t$$
 (x, t)

(c)
$$v^2 = v_o^2 + 2a(x-x_o)$$

(d)
$$\overline{v} = \frac{v_o + v}{2}$$

 x_{o} , v_{o} = initial position, initial velocity x, v = position, velocity at time t

Jan. 25, 2013

Constant acceleration formulae in 1D

Given constant acceleration a, we can find v(t). How about x(t)?

Therefore

$$x(t) = x_0 + v_0 t + \frac{1}{2}at^2$$

 $(x_0 - initial position, v_0 - initial velocity)$ Jan. 25, 2013

17

Constant acceleration formulae in 1D

Given constant acceleration a, we can find v(t) and x(t).

How about
$$v(x)$$
?

$$x = x_0 + vt$$

$$\frac{1}{v} = \frac{1}{2}(v_0 + v) = x_0 + \frac{1}{2}(v_0 + v)t$$

$$v = v_0 + at \implies t = \frac{v - v_0}{a} = x_0 + \frac{1}{2}(v_0 + v)\left(\frac{v - v_0}{a}\right)$$

$$= x_0 + \frac{1}{2}(v_0 + v)\left(\frac{v - v_0}{a}\right)$$

Therefore

$$v^2(x) = v_0^2 + 2a(x - x_0)$$

 $(x_0 - initial position, v_0 - initial velocity)$ Jan. 25, 2013

18

Constant acceleration formulae in 1D

Constant acceleration formulas (1D) (relates)

(Derived on pages 26-27 of Giancoli.)

(a)
$$v = v_o + at$$

(v, t)

(b)
$$x = x_o + v_o t + (1/2) a t^2 = x_0 + \overline{v} t$$
 (x, t)

(c)
$$v^2 = v_o^2 + 2a(x-x_o)$$
 (v, x)

(d)
$$\overline{v} = \frac{v_o + v}{2}$$

囲

囲

囲

囲

囲

詛

囬

 x_o , v_o = initial position, initial velocity x, v = position, velocity at time t

Jan. 25, 2013

Example: A person drops from a 4th story window and falls 15 m to a net.

 $x_0 = 15 \text{ m}$

x = 0

What is her velocity on impact?

$$x_0 = 15 m$$

$$\vec{x} = 0 m$$

$$a = -g = -9.8 \text{ m/s}^2$$

$$v_0 = 0$$

$$v(x=0) = ?$$

A)
$$v = v_0 + at$$

B)
$$x = x_0 + v_0 t + at^2/2$$

C)
$$v^2 = v_0^2 + 2a(x-x_0)$$

D)
$$x = x_0 + \overline{v}t$$

E)
$$\overline{v} = (v_0 + v_f)/2$$

Example: A person drops from a 4^{th} story window and falls 15 m to a net.

What time will she hit the net?

Which equation would you use?

A)
$$v = v_0 + at$$

B)
$$x = x_0 + v_0 t + at^2/2$$

C)
$$v^2 = v_0^2 + 2a(x-x_0)$$

D)
$$x = x_0 + \overline{v} t$$

Example: A person drops from a 4th story window and falls 15 m to a net.

The net "flexes" by one meter when she hits it.

What is her acceleration while in the net?

What is her acceleration
$$x_0 = 15 \text{ m}$$
 $x = 0$

A)
$$v = v_0 + at$$

B)
$$x = x_0 + v_0 t + at^2/2$$

C)
$$v^2 = v_0^2 + 2a(x-x_0)$$

D)
$$x = x_0 + \overline{v} t$$

Example: A person drops from a 4th story window and falls 15 m to a net.

1) What is her velocity on impact?

$$x_0 = 15 m$$

 $x = 0 m$
 $a = -g = -9.8 \text{ m/s}^2$
 $v_0 = 0$
 $v(x=0) = ?$

Which equation would you use?

A)
$$v = v_0 + at$$

B)
$$x = x_0 + v_0 t + at^2/2$$

C)
$$v^2 = v_0^2 + 2a(x-x_0)$$

D)
$$x = x_0 + \overline{v} t$$

Example: A person drops from a 4th story window and falls 15 m to a net.

1) What is her velocity on impact?

$$x_0 = 15 \text{ m}$$

 $x = 0 \text{ m}$
 $a = -g = -9.8 \text{ m/s}^2$
 $v_0 = 0$
 $v(x=0) = ?$

A)
$$v = v_0 + at$$

B)
$$x = x_0 + v_0 t + at^2/2$$

C)
$$v^2 = v_0^2 + 2a(x-x_0)$$

D)
$$x = x_0 + \overline{v} t$$

Applications of Kinematics in 1D

Example: A person drops from a 4th story window and falls 15 m to a net.

(1) What is her velocity on impact?

$$x_{0} = 15 \text{ m}$$

$$x = 0 \text{ m}$$

$$a = -g = -9.8 \text{ m/s}^{2}$$

$$v_{0} = 0$$

$$v(x=0) = ?$$

$$v^{2} = v_{0}^{2} + 2a(x - x_{0})$$

$$= 0 - 2g(0 - x_{0}) = 2gx_{0}$$

$$v = \pm \sqrt{2}gx_{0} = \pm \sqrt{2}(9.8)(15)$$

$$= \pm 17.1 \text{ m/s}$$
(negative)

28

Example: A person drops from a 4th story window and falls 15 m to a net.

What time will she hit the net?

A)
$$v = v_0 + at$$

$$B) \ \ x = x_0 + v_0 t + at^2/2$$

C)
$$v^2 = v_0^2 + 2a(x-x_0)$$

D)
$$x = x_0 + \overline{v} t$$

Example: A person drops from a 4th story window and falls 15 m to a net.

What time will she hit the net?

Which equation would you use?

$$A) \ v = v_0 + at$$

$$B) \ \ x = x_0 + v_0 t + at^2/2$$

C)
$$v^2 = v_0^2 + 2a(x-x_0)$$

D)
$$x = x_0 + \overline{v} t$$

Applications of Kinematics in 1D

Example: A person drops from a 4th story window and falls 15 m to a net.

(2) When will she impact the net?

Applications of Kinematics in 1D

Example: A person drops from a 4th story window and falls 15 m to a net.

(3) Assuming the net flexes 1 m, what will be her acceleration while in the net? $v_0 = -17.1 \text{ m/s}$ v = 0 $x_0 = 0$ x = -1 m a? $v^2 = v_0^2 + 2a(x - x_0)$ $0 = v_0^2 + 2a(-1 - 0)$ $v_0^2 = 2a$ $a = \frac{v_0^2}{2} = \frac{(-17.1)^2}{2}$

 $=146 \text{ m/s}^2 \sim 15 \text{ g}$