Spring 2014

PHYS-2010

Lecture 6

When a ball is thrown vertically upwards, what is its acceleration at the top of the trajectory? (Define up to be +)

- A) $+9.8 \text{ m/s}^2$
- B) -9.8 m/s^2
- C) 0 m/s^2
- D) Depends/other/not sure/...

Announcements

- Read Giancoli Chapter 3.
- CAPA assignment # 2 is due tomorrow (Tue) at 11 pm.
- Written homework # 2 is due this Friday at 4 PM.
- Recitation # 3 this week: print and bring to section: http://www.colorado.edu/physics/phys2010/phys2010_sp14/LabIndex.html
- My Help Room hours this week will be Thursday, 11-12.
- Midterm Exam 1 will be on Thursday, Feb 6, 7:30 PM.
- More details about the exam will be given on Wed.
- Students who need special accommodations to take the exam need to contact Prof. Pollock and me ASAP.

Last week

Constant acceleration formulas (1D) (relates)

(Derived on pages 26-27 of Giancoli.)

(a)
$$v = v_o + at$$
 (v, t)

(b)
$$x = x_o + v_o t + (1/2) a t^2 = x_0 + \overline{v} t$$
 (x, t)

(c)
$$v^2 = v_o^2 + 2a(x-x_o)$$
 (v, x)

(d)
$$\overline{v} = \frac{v_o + v}{2}$$

 x_o , v_o = initial position, initial velocity x_o , v_o = position, velocity at time t

Steps to solve problems....

- 1) Choose a coordinate system (or reference frame): origin and positive direction.
- 2) Write down what you know. Take care with signs.
- 3) Identify or derive the equation you need, linking what's known to what's unknown.
- 4) Solve for the unknown algebraically first: Check dimensions!
- 5) Substitute in numbers (in correct units) to get numerical result. Does the result make sense? Take care with signs.

Example: A person drops from a 4th story window and falls 15 m to a net.

(1) What is her velocity on impact?

$$x_0 = 15 m$$

 $x = 0 m$
 $a = -g = -9.8 \text{ m/s}^2$
 $v_0 = 0$
 $v(x=0) = ?$

Which equation should be used?

$$A) \ v = v_0 + at$$

B)
$$x = x_0 + v_0 t + at^2/2$$

C)
$$v^2 = v_0^2 + 2a(x-x_0)$$

D)
$$x = x_0 + \overline{v} t$$

Example: A person drops from a 4th story window and falls 15 m to a net.

(1) What is her velocity on impact?

$$x_0 = 15 m$$

 $x = 0 m$
 $a = -g = -9.8 \text{ m/s}^2$
 $v_0 = 0$
 $v(x=0) = ?$

$$v^{2} = v_{0}^{2} + 2a (x - x_{0})$$

= $0 - 2g(0 - x_{0}) = 2gx_{0}$

$$v = \pm \sqrt{2gx_0} = \pm \sqrt{2(9.8)(15)}$$

= ± 17.1 m/s (negative)

Example: A person drops from a 4th story window and falls 15 m to a net.

(2) When will she impact the net?

$$x_0 = 15 m$$
 $x = 0$
 $a = -g$ $v_0 = 0$
 $v(x=0) = -17.1 \text{ m/s}$
 $t(x=0) = ?$

Which equation should be used?

A)
$$v = v_0 + at$$

B)
$$x = x_0 + v_0 t + at^2/2$$

C)
$$v^2 = v_0^2 + 2a(x-x_0)$$

D)
$$x = x_0 + \overline{v} t$$

Example: A person drops from a 4th story window and falls 15 m to a net.

(2) When will she impact the net?

$$x_0 = 15 m$$

 $x = 0$
 $a = -g = -9.8 \text{ m/s}^2$
 $v_0 = 0$
 $v(x=0) = -17.1 \text{ m/s}$
 $t(x=0) = ?$

$$v = v_0 - gt \qquad x = x_0 + vt \qquad x = x_0 + v_0 t - \frac{1}{2}gt^2$$

$$t = \frac{-v}{g} \qquad t = \frac{-x_0}{v} = \frac{-2x_0}{v} \qquad t = \sqrt{\frac{2x_0}{g}}$$

$$t = 1.75 \text{ s}$$

Example: A person drops from a 4th story window and falls 15 m to a net.

(3) Assuming the net flexes 1 m, what will be her acceleration while in the net?

$$v_0 = -17.1 \text{ m/s}$$

 $v = 0$ $x_0 = 0$ $x = -1 \text{ m}$
 $a = ?$

Which equation should be used?

A)
$$v = v_0 + at$$

B)
$$x = x_0 + v_0 t + at^2/2$$

C)
$$v^2 = v_0^2 + 2a(x-x_0)$$

D)
$$x = x_0 + \overline{v} t$$

Example: A person drops from a 4th story window and falls 15 m to a net.

(3) Assuming the net flexes 1 m, what will be her acceleration while in the net?

in the net?

$$v_0 = -17.1 \text{ m/s}$$

$$v = 0 \quad x_0 = 0 \quad x = -1 \text{ m}$$

$$a = ?$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

$$0 = v_0^2 + 2a(-1 - 0)$$

$$v_0^2 = 2a$$

$$a = \frac{v_0^2}{2} = \frac{(-17.1)^2}{2}$$

$$= 146 \text{ m/s}^2 \sim 15 \text{ g}$$

A CAPA Problem: A ball is thrown straight up with an initial velocity of 21.62 m/s. Neglecting air resistance, how long will it take for the object to reach a height of 20 m?

$$x = x_o + v_o t + (1/2) a t^2$$

$$h = 0 + v_o t - \frac{1}{2}gt^2$$

$$gt^2 - 2v_o t + 2h = 0$$

$$t = ?$$

In the previous problem, we got the following quadratic equation:

$$gt^2 - 2v_0 t + 2h = 0$$

The solution to this equation gives the time for a ball thrown in the air to reach a certain height h. But a quadratic equation $at^2+bt+c=0$ has two solutions:

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$a = g$$
, $b = -2v_0$, $c = 2h$

$$t = \frac{2v_0}{2g} \pm \frac{1}{2g} \sqrt{4v_0^2 - 8gh} = \frac{v_0}{g} \pm \frac{1}{g} \sqrt{v_o^2 - 2gh}$$

In the previous problem, a quadratic equation for the time at which a ball thrown in the air reaches a height h:

$$t = \frac{v_0}{g} \pm \frac{1}{g} \sqrt{v_o^2 - 2gh}$$

Why are there two solutions to this problem?

- A) One is for the time when the object is on the ground and the other is when it reaches 20 m in the air.
- B) One is meaningless and can be discarded. The other is the one of interest.
- C) One is the time the object reaches 20 m on the way up and the other the time it reaches 20 m on the way down.

In the previous problem, a quadratic equation is found for the time at which a ball thrown in the air with initial velocity v_o reaches a height h:

$$t = \frac{v_0}{g} \pm \frac{1}{g} \sqrt{v_o^2 - 2gh}$$

At what time will the ball hit the ground?

A)
$$\frac{v_0}{g}$$

B)
$$\frac{2v_0}{g}$$

C)
$$\frac{v_0}{g} + \frac{1}{g} \sqrt{v_o^2 - 2gx}$$

D)
$$\frac{v_0}{g} - \frac{1}{g} \sqrt{v_o^2 - 2gx}$$

