Spring 2014

PHYS-2010

Lecture 7

If you **drop** an object in the absence of air resistance, it accelerates downward at 9.8 m/s^2 .

If instead you **throw** it downward, its downward acceleration **after release** is....

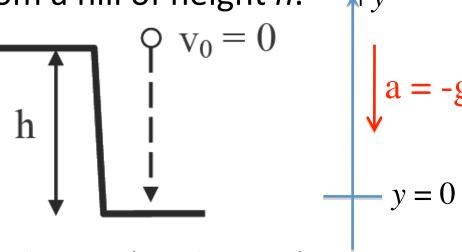
- A) less than 9.8 m/s^2 .
- B) 9.8 m/s^2
- C) more than 9.8 m/s²

If you **drop** an object in the absence of air resistance, it accelerates downward at 9.8 m/s^2 .

If instead you **throw** it downward, its downward acceleration **after release** is....

- A) less than 9.8 m/s^2 .
- B) 9.8 m/s^2
- C) more than 9.8 m/s²

Announcements


- Read Giancoli Sections 3.1-3.5.
- CAPA assignment # 3 is due next Tuesday at 11 pm.
- Written homework # 2 is due this Friday at 4 PM.
- My Help Room hours this week will be Thursday, 11-12.
- Midterm Exam 1 will be Thursday, Feb 6, 7:30-9:15 PM.
- More details about the exam are on the next slide on the course website:

http://www.colorado.edu/physics/phys2010/phys2010_sp14/exams.html

Mid-Term Exam I

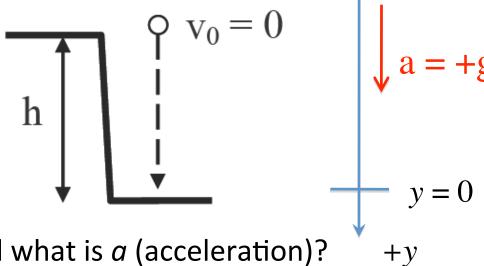
- Covers Giancoli Chapters 1 3.4, in-class Clicker Questions & Lectures 1-8, CAPA Sets 1-3, Written Homeworks 1-2, Recitations 1-3, and Lab 1.
- The exam is closed book and no notes allowed. There will be 20-25 multiple choice questions. Bring a #2 pencil for marking your answer on the scan sheet.
- Bring a scientific calculator which you know how to operate; apps on phones or other wireless devices are not allowed.
- You can bring 1-sided page (8.5x11) with your hand-written notes.
- Your exam room will be announced in Monday's lecture.
- An old practice exam will be posted on D2L.
- Students who need special accommodations to take the exam need to contact Prof. Pollock ASAP.
 PHYS-2010

Consider a ball dropped from a hill of height h.

What is y_0 (initial position) and what is α (acceleration)?

A)
$$y_0 = +h$$
, $a = -g$

B)
$$y_0 = -h$$
, $a = +g$


C)
$$y_0 = 0$$
, $a = +g$

D)
$$y_0 = -h$$
, $a = -g$

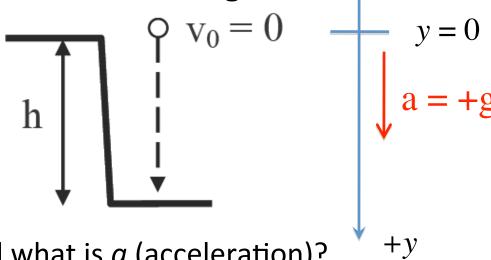
E)
$$y_0 = 0$$
, $a = -g$

Note: $g = +9.8 \text{ m/s}^2 > 0$

Consider a ball dropped from a hill of height h.

What is y_0 (initial position) and what is a (acceleration)?

A)
$$y_0 = +h$$
, $a = -g$


B)
$$y_0 = -h$$
, $a = +g$

C)
$$y_0 = 0$$
, $a = +g$

D)
$$y_0 = -h$$
, $a = -g$

E)
$$y_0 = 0$$
, $a = -g$

Consider a ball dropped from a hill of height h.

What is y_0 (initial position) and what is a (acceleration)?

A)
$$y_0 = +h$$
, $a=-g$

B)
$$y_0 = -h$$
, $a = +g$

C)
$$y_0 = 0$$
, $a = +g$

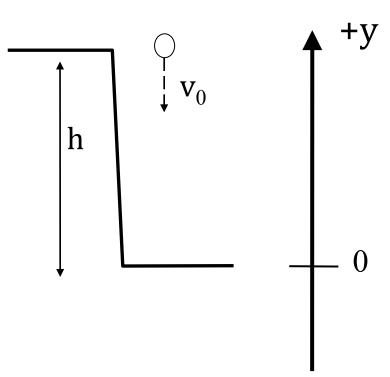
D)
$$y_0 = -h$$
, $a = -g$

E)
$$y_0 = 0$$
, $a = -g$

Note: $g = +9.8 \text{ m/s}^2 > 0$

A rock thrown straight down from an initial height h above the ground, with an initial SPEED v_0 . UP is chosen as the + direction.

What is the correct formula for the **velocity** in this case?


A)
$$v = v_0 + gt$$

B)
$$v = -v_0 + gt$$

C)
$$v = v_0 - gt$$

D)
$$v = -v_0 - gt$$

E) None of these

Clicker Question

Room Frequency BA

On planet X, a cannon ball is fired straight upward. The position and velocity of the ball are listed for many times in the table below.

Time(s)	Height(m)	Velocity(m/s)
0	0	20	V
1	17.5	15	<i>J</i>
2	30	10	\bigcap \bigwedge
3	37.5	5	A. 15 20
4	40	0	$a = \frac{\Delta v}{m} = \frac{15 - 20}{m} = -5 \frac{m}{m}$
5	37.5	-5	$a = \frac{1}{\Delta t} = \frac{1}{1 - 0} \frac{1}{s^2} = -5 \frac{1}{s^2}$
6	30	-10	
7	17.5	-15	
8	0	-20	Y
	,		

What is the acceleration due to gravity on Planet X?

A:
$$-5$$
m/s²

B:
$$-10 \text{m/s}^2$$

$$C: -15 \text{m/s}^2$$

D:
$$-20 \text{m/s}^2$$

Consider a cannonball shot up into the air with initial velocity v_0 . If its initial velocity is doubled, the time to reach the apex of its trajectory will.....

A) Double

- B) Increase by a factor of 4
- C) Increase by a factor of 9
- D) Increase by the square root of 2
- E) Impossible to tell from the information given.

Hint: Use the equation $v = v_0 + a t$.

$$0 = v_0 - gt_1 \rightarrow t_1 = \frac{v_0}{g}$$

$$0 = 2v_0 - gt_2 \rightarrow t_2 = \frac{2v_0}{g}$$

$$t_1 = \frac{v_0}{g}$$

$$t_2 = 2t_1$$

Consider a cannonball shot up into the air with initial velocity v_0 . If its initial velocity is doubled, the maximum height of the ball will.....

- A) Double
- B) Increase by a factor of 4
- C) Increase by a factor of 9
- D) Increase by the square root of 2
- E) Impossible to tell from the information given.

Hint: Use the equation
$$v^2 = v_0^2 + 2a(x-x_0)$$
.
 $0 = v_0^2 - 2gx_1 \rightarrow x_1 = \frac{v_0^2}{2g}$

$$0 = (2v_0)^2 - 2gx_2 \quad \Rightarrow \quad x_2 = \frac{4v_0^2}{2g}$$

$$x_2 = 4x_1$$