Spring 2014

PHYS-2010

Lecture 19

A block of mass m on a rough table is pulled on by a string which exerts a horizontal force of magnitude F_T . The block does not move. The coefficient of static friction between block and table is μ_s .

What can you say about the size of the force of friction F_{fric} ?

A)
$$F_{\text{fric}} = \mu_{\text{s}} mg$$

A)
$$F_{\text{fric}} = \mu_{\text{s}} mg$$
 B) $F_{\text{fric}} = \mu_{\text{s}} mg + F_{\text{T}}$

C)
$$F_{\text{fric}} = F_{\text{T}}$$

D) More than one of these is correct

E) None of these is correct

A block of mass m on a rough table is pulled on by a string which exerts a horizontal force of magnitude F_T . The block does not move. The coefficient of static friction between block and table is μ_s .

What can you say about the size of the force of friction F_{fric} ?

A)
$$F_{\text{fric}} = \mu_{\text{s}} mg$$

A)
$$F_{\text{fric}} = \mu_{\text{s}} mg$$
 B) $F_{\text{fric}} = \mu_{\text{s}} mg + F_{\text{T}}$

C)
$$F_{\text{fric}} = F_{\text{T}}$$

D) More than one of these is correct

E) None of these is correct

Announcements

- Read Giancoli Chapter 5.
- CAPA # 7 due next Tuesday at 11 pm.
- Written homework # 5 due Friday at 4 pm.
- Prof. Pollock is out of town this Friday, no office hours.
- Midterm II will be on Thursday, March 6, at 7:30 pm.
- Review session will be held by Prof. Pollock and Rosemary Wulf on Tue. March 4, 5-6 pm, Duane G125.
- Exam seating:
 - if your TA is Rosemary Wulf or Andrew Hess, your exam is here, G1B30.
 - if your TA is Jake Fish or Clarissa Briner, your exam is next door, G1B20.
- More details about the exam are on the course website:

Clicker Question

Room Frequency BA

An object with mass M is resting on a rough table with coefficients of static and kinetic friction μ_S and μ_K , respectively.

Which of the following is a necessary condition to start the object in motion?

- A) M > m
- B) M < m
- C) $mg > \mu_K Mg$
- D) $Mg > \mu_S mg$

PHYS-2010 E)
$$mg > \mu_s Mg$$

Clicker Question

Room Frequency BA

 $|f_{max}| = \mu_{S}N = \mu_{S}Mg$

mq

T = mg (little block) $T > \mu_s N$ (large block)

For motion to begin: $mg > \mu_s Mg$

An object with mass M is resting on a rough table with coefficients of static and kinetic friction μ_S and μ_K , respectively.

Which of the following is a necessary condition to start the object in motion?

- A) M > m
- B) M < m
- C) $mg > \mu_K Mg$
- D) $Mg > \mu_S mg$

PHYS-2010 E) $mg > \mu_s Mg$

A mass slides down a <u>rough</u> (with friction) inclined plane with some non-zero acceleration a_1 . Next, the same mass is shoved up the same incline with a large, brief initial push. As the mass moves up the incline, its acceleration is a_2 . How do a_1 and a_2 compare?

A)
$$a_1 > a_2$$

B)
$$a_1 = a_2$$

C)
$$a_1 < a_2$$

Room Frequency BA

A car of mass *m* is moving in the positive x-direction. The driver slams on the brakes and the tires skid on the ground. The direction of the frictional force between the tires and the road is backwards. Its magnitude is $f = \mu_k N$ where μ_k is the kinetic friction coefficient.

The magnitude of the car's acceleration is given by

- $A) \mu A$
- B) μ_{K} mg
- $\mu_{K}g$
 - $\mu_{\rm S}$ mg
- $\mu_{S}g$

$$F_{\text{net}} = ma = f = -\mu_{\text{K}} mg$$

$$a = -\mu_{\rm K}g$$

$$a = -\mu_{K}g$$
$$|a| = \mu_{K}g$$

A block of mass *m* is being pushed across a rough horizontal table. A constant velocity v is maintained with an external force F_{ext} . What is μ_{κ} ?

$$F_{net,y} = ma_y = N - mg = 0 \qquad N = mg$$

$$F_{net,x} = ma_x = F_{ext} - \mu_k N = F_{ext} - \mu_k mg = 0$$

$$\mu_k = \frac{F_{ext}}{mg}$$
PHYS-2010

A block of mass m is pulled across a rough (μ_K) flat table with a constant force $F_{\rm ext}$ at an angle θ .

What is the correct expression for the magnitude of the Normal force to use for calculating the friction force?

- A) N=mg
- B) N=mg $\sin\theta$
- C) $N=mg sin\theta F_{ext} sin\theta$
- D) $N=mg-F_{ext}cos\theta$
- E) None of the above

$$F_{\text{net,y}} = ma_y = 0$$

$$0 = N - mg + F_{ext} \sin\theta$$

$$N = mg - F_{ext} \sin \theta$$

A block of mass m slides down a rough (μ_{κ}) incline tilted at an angle θ from the horizontal.

$$F_{net,y} = ma_y = N - mg\cos\theta = 0 \Rightarrow N = mg\cos\theta$$

$$F_{net,x} = ma_x = mg\sin\theta - \mu_k N$$

$$ma_x = mg\sin\theta - \mu_k mg\cos\theta$$

2/26/2014

11

A block of mass m slides down a rough (μ_{K}) incline tilted at an angle θ from the horizontal. What's the magnitude of α ?

$$a = g(\sin\theta - \mu_K \cos\theta)$$

For the mass to have positive acceleration while sliding, what condition needs to be satisfied:

$$\underline{a > 0}: \quad \sin \theta > \mu_K \cos \theta$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} > \mu_K$$

$$\theta > \tan^{-1}(\mu_K)$$

Condition to speed up while sliding.

A block of mass m slides down a rough (μ_K) incline tilted at an angle θ from the horizontal. What's the magnitude of α ?

$$a = g(\sin\theta - \mu_K \cos\theta)$$

 $\theta > \tan^{-1}(\mu_K)$ Condition to speed up while sliding.

Summary:

- (1) If a > 0, a sliding object will speed up.
- (2) If a < 0, a sliding object will slow to a stop.

- (3) If a = 0, the object will slide with a constant speed.
- (4) For the object to accelerate from rest, the coefficient of kinetic friction, μ_K , should be replaced by the coefficient of static friction, μ_S . To start sliding: $\theta > \tan^{-1}(\mu_S)$.

Circular Motion

Kinematics of Circular Motion

<u>Circular Motion:</u> Object moving in a circle of radius *r* with a constant speed (meters/second).

T = period = time for one revolution (one cycle)

speed =
$$|\vec{v}|$$
 = $\frac{\text{distance}}{\text{time}}$ = $\frac{\text{circumference}}{\text{period}}$ = $\frac{2\pi r}{T}$

2/26/2014 PHYS-2010 16

Is the object accelerating?

- A) Yes
- B) No