

Is the object accelerating?

- A) Yes
- B) No

Is the object accelerating?

A) Yes

B) No

Is the object accelerating?

The speed |v| is not changing, but the velocity vector **direction** is constantly changing!

Recall definition of acceleration:

acceleration =
$$\vec{a} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v}_2 - \vec{v}_1}{t_2 - t_1}$$

Spring 2014

PHYS-2010

Lecture 20

Announcements

- Read Giancoli Chapter 5, start Chapter 6.
- CAPA # 7 due next Tuesday at 11 pm.
- No Written homework # 5 next week.
- Midterm II will be on Thursday, March 6, at 7:30 pm.
- Practice exam is posted on D2L.
- Review session will be held by Prof. Pollock and Rosemary Wulf on Tue. March 4, 5-6 pm, Duane G125.
- Exam seating:
 - if your TA is Rosemary Wulf or Andrew Hess, your exam is here, G1B30.
 - if your TA is Jake Fish or Clarissa Briner, your exam is next door, G1B20.
- More details about the exam are on the course website:

Materials to study for Mid-Term II

- **Giancoli Ch. 3.5 5.3** (Vectors, Projectile Motion, Newton's laws, Pulleys, Friction, Circular Motion).
- In-class Clicker Questions & Lecture Materials.
- Your CAPAs through # 7.
- Written Homeworks 3 5.
- Recitation Assignments and Lab.
- Giancoli web site: "Practice Questions", "MCAT Study Guide", "Practice Problems". Link on course web site.
- Old practice exam posted on D2L.
- Dr. Michael **Dubson's Chapter Notes** (link on course website).

What is the *direction* of the acceleration when particle is at point X?

Circular Motion: Centripetal Acceleration

Acceleration points toward the center of the circle.

"Centripetal acceleration" → from Latin *centrum* "center" and *petere* "to seek"

Q: What is the **magnitude** of centripetal acceleration?

What is the *magnitude* of centripetal acceleration?

$$|\vec{a}| = \frac{v^2}{r}$$

What is the *magnitude* of centripetal acceleration?

2/28/2014 PHYS-2010

Clicker Question

Room Frequency BA

A race car travels around the track shown at *constant speed*.

Over which portion of the track is the magnitude of the

acceleration the smallest?

- A) From 1 to 2
- B) From 2 to 3
- C) From 3 to 4
- D) Acceleration is the same for all 3 segments.

Answer B: from 2 to 3.

The acceleration is zero along the straight line portions of the track!

What about the two curved segments, 1-2 and 3-4?

Clicker Question

Room Frequency BA

A merry-go-round has a radius r = 1 meter. It's pushed to have a period of T = 3 seconds.

$$v = \frac{2\pi n}{T}$$

What is the approximate centripetal acceleration? A)1 m/s²

$$v = \frac{2\pi r}{T} \approx \frac{2 \times 3 \times 1m}{3s} \approx 2m/s$$

$$a = \frac{v^2}{r} \approx \frac{(2m/s)^2}{1m} = 4m/s^2$$
PHYS-2010

B)
$$4 \text{ m/s}^2$$

$$C) 0 m/s^2$$

D)
$$100 \text{ m/s}^2$$

E)
$$500 \text{ m/s}^2$$

Clicker Question

Room Frequency BA

A merry-go-round has a radius *r*. It's pushed to have a period *T*.

$$|\vec{a}| = \frac{v^2}{r}$$

$$v = \frac{2\pi r}{T}$$

If the rotation is then slowed down so that the **period doubles**, the centripetal acceleration will...

- A) increase by a factor of 2
- B) decrease by a factor of 2
- C) increase by a factor of 4

$$a = \frac{v^2}{r} = \frac{(2\pi r/T)^2}{r} \sim \frac{1}{T^2}$$

D) decrease by a factor of 4

Kinematics of Circular Motion

Circular Motion – fixed radius and at constant speed |v|

Always accelerating due to change in direction of velocity vector.

Centripetal acceleration inwards towards the circle center with magnitude $|a| = v^2/r$

Note: this is purely kinematic result!

"Wall-of-Death"

Copyright © 2005 Pearson Prentice Hall, Inc.

But don't I feel out outward force?

Consider the "Wall-of-Death"

Which diagram correctly shows the real forces on the rider?

