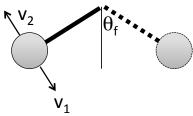
A stick of dynamite explodes.
Is energy conserved in this situation?

A) Yes B) No

Spring 2014
PHYS-2010
Guest Lecturer:
Dr. Michael Dubson


Lecture 27

Announcements:

- CAPA Set # 9 due Tues
- Written HW Fri.
- Friday is last day to drop a course.
- There is a prelab this week!
- Start reading Giancoli Ch 7. (7.1-.3)

You can "launch" a pendulum by either starting it with initial velocity \mathbf{v}_1 "down" or $\mathbf{v}_2 = -\mathbf{v}_1$ (i.e. "launch it up" to start off) Which launch brings it to a larger final angle?

- A) Higher with \mathbf{v}_1
- B) Higher with $\mathbf{v}_2 = -\mathbf{v}_1$
- C) No difference!

Two marbles, one twice as massive as the other, are dropped to the ground from the roof of a building. (Assume no air resistance.) Just before hitting the ground, the heavier marble has..

- A) As much KE as the lighter marble
- B) Twice as much KE as the lighter marble
- C) Half as much KE as the lighter marble
- D) Four times as much KE as the lighter marble
- E) Impossible to determine

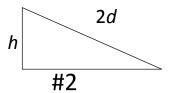
A projectile is launched (speed v_0 , angle θ) What is its KE on the way DOWN, at height h above the ground?

- A) $\frac{1}{2} \text{ mv}_0^2 + \text{mgh}$ B) $\frac{1}{2} \text{ mv}_0^2 \text{mgh}$

C) mgh

- D) mgh $\frac{1}{2} \text{ mv}_0^2$
- E) other...

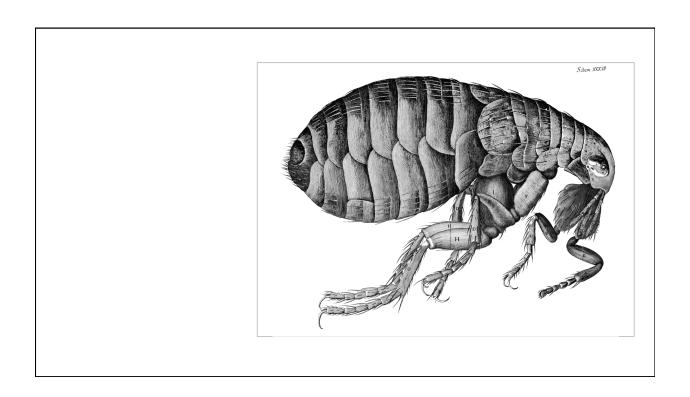
You are pushing boxes up two different hills. Path #2 is twice as long but less steep. Ignore friction, and assume the boxes move with constant speed. How much more gravitational potential energy is gained if you take path #2? A) no difference B) twice as much C) 4x D) half as much E) It depends!! d 2*d* h h #2 #1

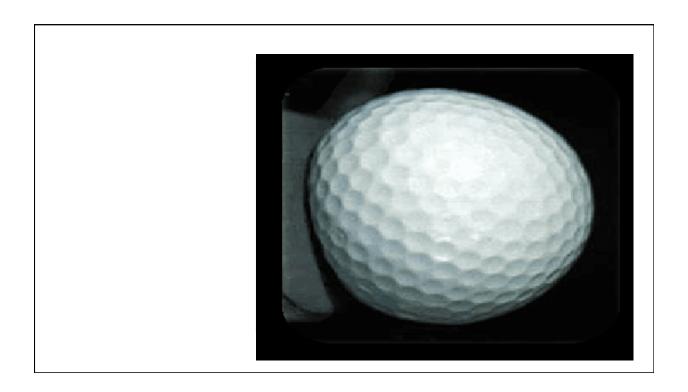

Conservative forces

Now assume there is friction.

How much more gravitational potential energy is gained if you take the longer path?

- A) no difference
- B) twice as much
- C) 4x
- D) half as much
- E) It depends!!




Springs

Force = -kx

k = "spring constant" units = N/m

x = displacement of spring

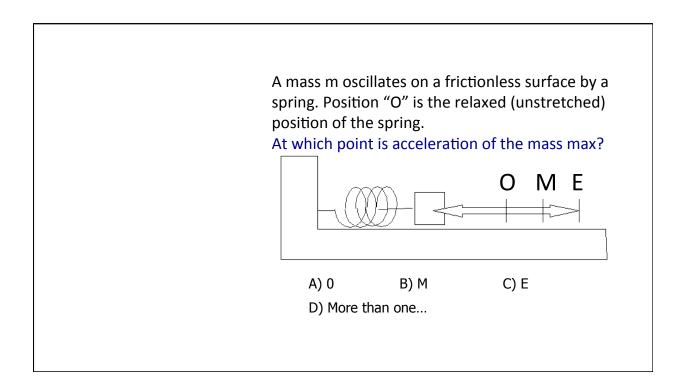
Springs

Elastic potential energy (stretching or compressing by "x")

 $PE = \frac{1}{2} k x^2$

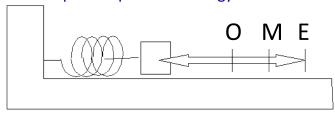
You hang a mass m from a spring, it stretches by distance x (and stores some potential energy). If you hang a mass 2m from the same spring, it stores ...

- A) The same amount of energy
- B) Double the amount of energy
- C) Half the amount of energy
- D) Four times the amount of energy
- E) Something else/???


A mass m oscillates on a frictionless surface by a spring. Position "O" is the relaxed (unstretched) position of the spring.

At which point is the FORCE on the mass max?

O M E


A) 0 B) M C) E

D) More than one/Other/...??

A mass m oscillates on a frictionless surface by a spring. Position "O" is the relaxed (unstretched) position of the spring.

At which point is potential energy max?

- A) 0
- B) M
- C) E
- D) More than one...

Power

$$\overline{P}$$
 = average power = $\frac{\text{work}}{\text{time}}$

Elevator #1 can lift mass m up distance h in time t. Its power output is P_1 .

Elevator #2 can lift mass m up distance 2h in time 2t. What is P_2 ?

- A) P₁ B) 2P₁ C) 4P₁
- D) Something else

If you leave a 100 W bulb on all day, how much does it cost?
In CO, Excel charges about 10 cents per kW*hr.

- A) Less than a penny
- B) A couple of cents
- C) About a quarter
- D) Over \$2
- E) What's a kw*hr again?