Spring 2013

PHYS-2010

ANNOUNCEMENTS

• CAPA Set # 9 due Friday, March 15, at 11:59 pm (reminder: please pick up your printed copies!)

This week in Section: Lab 3 "Momentum"

Read Giancoli Chapter 7.

Collisions and Momentum

Collisions

Before the collision:

After the collision:

$$V_{1f}$$
 W_{2f} M_2

 v_{1f} = final velocity of mass 1

 v_{2f} = final velocity of mass 2

These collisions should obey Newton's Laws

Elastic Collisions

Total kinetic energy remains constant during elastic collisions:

KE is conserved or $\Delta KE = 0$

No energy converted to thermal or potential energy

$$KE_{1i} + KE_{2i} = KE_{1f} + KE_{2f}$$

$$\frac{1}{2}m_1v_{1i}^2 + \frac{1}{2}m_2v_{2i}^2 = \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2$$
March 13, 2013

Inelastic Collisions

Real macroscopic objects never have perfectly elastic collisions although it's sometimes a good approximation.

Inelastic Collision: KE is not constant; some is converted to another kind of energy; typically heat or deformation.

Totally Inelastic Collision: KE is not conserved, and the objects stick together after collision.

March 13, 2013

New Conserved Quantity -> Momentum

momentum
$$\vec{p} = m\vec{v}$$
 (a vector)

(Units: kg m/s)

Total momentum vector is always conserved in collisions (both elastic and inelastic):

$$\vec{p}_{1i} + \vec{p}_{2i} = \vec{p}_{1f} + \vec{p}_{2f}$$

Conservation of Momentum

$$mv_{1i} + mv_{2i} = mv_{1f} + mv_{2f}$$
 (in one-dimension)

Momentum conservation greatly facilitates solving collision problems!

Why is Momentum Conserved?

During the collision, Newton's Third Law applies.

$$F_{21} = -F_{12}$$

$$m_2 a_2 = - m_1 a_1$$

Assume a constant acceleration when the objects are in contact for a time Δt

$$a = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{\Delta t}$$

$$m_1 \left(\frac{v_{1f} - v_{1i}}{\Delta t} \right) = -m_2 \left(\frac{v_{2f} - v_{2i}}{\Delta t} \right)$$

$$m_1 v_{1f} + m_2 v_{2f} = m_1 v_{1i} + m_2 v_{2i}$$

Momentum conservation resulting from Newton 2nd + 3rd Law

Clicker Question

Room Frequency BA

In which situation is the magnitude of the total momentum the largest?

- A) Situation I.
- B) Situation II.
- C) Same in both.

Magnitudes are the same $|p_{total}|=mv$

I:
$$\underset{m}{\square}$$
 $\overset{v}{\longrightarrow}$

$$p_{total} = mv + 0 = mv$$

$$p_{total} = mv - 2mv = - mv$$

Totally Inelastic Collision

An object of mass m_1 initially moving with speed v_{1i} collides with another object of mass m_2 initially at rest.

The objects stick together after the collision.

What is the velocity of the objects after the collision?

$$m_{1}v_{1i} + m_{2}v_{2i} = m_{1}v_{1f} + m_{2}v_{2f}$$

$$m_{1}v_{1i} + 0 = (m_{1} + m_{2})v_{f}$$

$$v_{f} = \frac{m_{1}}{m_{1}}v_{1i}$$
Does that make sense?

March 13, 2013

Totally Inelastic Collision

Is Kinetic Energy conserved?

Before

$$KE_i = \frac{1}{2}m_1 v_{1i}^2 + 0$$

Kinetic Energy Decreases (not conserved)

$$KE_f = KE_i \left(\frac{m_1}{m_1 + m_2} \right)$$

After

$$KE_f = \frac{1}{2}(m_1 + m_2)v_f^2$$

conservation

From momentum conservation
$$v_f = \frac{m_1}{m_1 + m_2} v_{1i}$$

$$KE_{f} = \frac{1}{2}(m_{1} + m_{2}) \left(\frac{m_{1}}{m_{1} + m_{2}}\right)^{2} v_{1i}^{2}$$

$$KE_{f} = \frac{1}{2}m_{1}v_{1i}^{2} \left(\frac{m_{1}}{m_{1} + m_{2}}\right)^{11}$$
PHYS-2010

Elastic Collision Example

An object of mass **m** initially moving with speed **v** collides with another object of mass **m** initially at rest.

For an elastic collision, what happens afterwards?

Momentum Conserved

$$p_{initial} = p_{final}$$

$$mv + 0 = mv_{1f} + mv_{2f}$$
One equation,
$$two unknowns$$

$$(v_{1f} \& v_{2f})$$
March 13, 2013

Kinetic Energy Conserved

$$\frac{1}{2}mv^2 + 0 = \frac{1}{2}mv_{1f}^2 + \frac{1}{2}mv_{2f}^2$$

Now we have two equations, two unknowns $(v_{1f} \& v_{2f})$

PHYS-2010 12

Momentum Conserved:

Kinetic Energy Conserved:

$$mv = mv_{1f} + mv_{2f}$$

$$v = v_{1f} + v_{2f} \quad \text{plug in}$$

$$v_{1f} = v - v_{2f}$$

$$\frac{1}{2}mv^{2} = \frac{1}{2}mv_{1f}^{2} + \frac{1}{2}mv_{2f}^{2}$$

$$v^{2} = v_{1f}^{2} + v_{2f}^{2}$$

$$v^{2} = (v - v_{2f})^{2} + v_{2f}^{2}$$

$$v^{2} = v^{2} - 2vv_{2f} + v_{2f}^{2} + v_{2f}^{2}$$

$$2vv_{2f} = 2v_{2f}^{2}$$

$$v_{1f} = v - v_{2f}$$

$$v_{1f} = 0$$

March 13, 2013 PHYS-2010 13

Is that really correct?

Clicker Question

Room Frequency BA

Two masses of size **m** and **3m** are at rest on a frictionless table.

A compressed, massless spring between the masses is suddenly allowed to uncompress, pushing the masses apart.

After the masses separate, the speed of **m** is _____the speed of **3m**.

A) the same as

B) twice

C) 3 times

D) 4 times

$$p_{initial} = p_{final}$$

$$0 = mv_1 + 3mv_2$$

$$v_1 = -3v_2$$

March 13, 2013

Clicker Question

Room Frequency BA

Two masses of size **m** and **3m** are at rest on a frictionless table.

A compressed, massless spring between the masses is suddenly allowed to uncompress. pushing the masses apart.

the KE of **3m**. After the masses separate, the KE of **m** is

A) the same as B) twice

C) 3 times

D) 9 times

$$KE_1 = \frac{1}{2}m(3v)^2 = \frac{9}{2}mv^2$$
 $KE_2 = \frac{1}{2}(3m)v^2 = \frac{3}{2}mv^2$