A bucket containing a brick is swung in a circle at <u>constant</u> speed in a vertical plane as shown. The bucket is swung fast enough that the brick does not fall out.

The **net** force on the brick as it is swung has maximum magnitude at position.

- A) <u>T</u>op.
- B) Bottom.
- C) Right
- D) The net force has the same magnitude at all positions.

Clicker Question

Room Frequency BA

A bucket containing a brick is swung in a circle at <u>constant</u> speed in a vertical plane as shown. The bucket is swung fast enough that the brick does not fall out.

The **net** force on the brick as it is swung has maximum magnitude at position.

- A) <u>T</u>op.
- B) Bottom.
- C) Right
- D) The net force has the same magnitude at all positions.

Answer:

Net force: $F_{\text{net}} = m \ a = m \ v^2/R$.

Since the speed *v* and radius R are constant, the acceleration and hence the net force must also be constant in magnitude.

Spring 2014

PHYS-2010

Lecture 21

Announcements

- Read Giancoli Chapter 5.
- CAPA # 7 due Tuesday at 11 pm.
- No Written homework this week!
- This week: Lab # 4 "Newton's Laws" (no prelab).
- Midterm II on Thursday, March 6, at 7:30 pm.
- Practice exam is posted on D2L.
- Review session tomorrow March 4, 5-6 pm, Duane G125.
- Exam seating:
 - if your TA is Rosemary Wulf or Andrew Hess, your exam is here, G1B30.
 - if your TA is Jake Fish or Clarissa Briner, your exam is next door, G1B20.
- More details about the exam are on the course website:

http://www.colorado.edu/physics/phys2010/phys2010_sp14/exams.html

Materials to study for Mid-Term II

- **Giancoli Ch. 3.5 5.3** (Vectors, Projectile Motion, Newton's laws, Pulleys, Friction, Circular Motion).
- In-class Clicker Questions & Lecture Materials.
- Your CAPAs through # 7.
- Written Homeworks 3 5.
- Recitation Assignments and Lab.
- Giancoli web site: "Practice Questions", "MCAT Study Guide", "Practice Problems". Link on course web site.
- Old practice exam posted on D2L.
- Dr. Michael **Dubson's Chapter Notes** (link on course website).

What is the *direction* of the acceleration when particle is at point X?

Consider the "Wall-of-Death"

Which diagram correctly shows the real forces on the rider?

PHYS-2010

Fictitious force:

"centrifugal force"

– in the rider's frame.

Centrifugal force (from Latin centrum, meaning "center", and fugere, meaning "to flee")

Clicker Question

Room Frequency BA

What are the three forces #1, 2, 3?

- A) 1 gravity
 - 2 centrifugal force
 - 3 friction
- B) 1 friction
 - 2 normal force of the wall
 - 3 gravity
- C) 1 centripetal force
 - 2 normal force of the wall
 - 3 friction
- D) 1 friction
 - 2 centrifugal force
 - 3_{rs}gravity

Dynamics of Uniform Circular Motion

Choose a coordinate system: Usually radial and tangential.

For uniform motion, velocity in the tangential direction is constant, so

$$\Sigma F_T = m a_T = 0$$

In the radial direction:

$$\Sigma F_R = m a_R = mv^2/r$$

For every case of uniform circular motion, there must be a force directed towards the center.

We say there is a centripetal force. However, there is always a **specific** force that acts as the centripetal force. There is no "circle force". <u>Circular motion does</u> not cause a force.

Wall of Death ride

Centripetal force → Normal Force

For every case of uniform circular motion, there must be a force directed towards the center.

We say there is a centripetal force. However, there is always a **specific** force that acts as the centripetal force. There is no "circle force". <u>Circular motion does</u> not cause a force.

Wall of Death ride

Centripetal force → Normal Force

Bucket of water circling around tied to a string.

Centripetal force → Tension Force

Race Car driving Centripetal force → Friction Force in circle PHYS-2010 Force

Corona Arch Swing (Moab, Utah, 03/31/2012)

http://www.youtube.com/watch?v=nCjVUaR1tVo

(video cortesy of Sean Kuusinen and CU Alpine Club)

A student of mass m = 60 kg suspended from the Corona Arch by a rope of length R = 30 m is swinging left to right. When she is at the lowest point of her trajectory, her speed is V = 10 m/s.

How does the tension force in the rope compare with the force of gravity?

A)
$$T > mg$$

B)
$$T = mg$$

C)
$$T < mg$$

Tension is greater than mg. It has to overcome gravity to provide the upward $net\ force$ necessary to provide the required upward $centripetal\ acceleration$.

For every case of uniform circular motion, there must be a force directed towards the center.

We say there is a centripetal force. However, there is always a **specific** force that acts as the centripetal force. There is no "circle force".

Wall of Death ride

Centripetal force → Normal Force

Bucket of water circling around tied to a string.

Centripetal force → Tension Force

Race Car driving Centripetal force → Friction Force in circle PHYS-2010 Force

Any other examples of circular motion?

The Earth circles the Sun at an average distance of 1 Astronomical Unit (AU) = 1.5×10^{11} meters in one year. What is its orbital centripetal acceleration?

$$a_{radial} = \frac{v^2}{r} = \frac{\left(\frac{2\pi r}{T}\right)^2}{r} = \frac{4\pi^2 r}{T^2}$$

$$a_{radial} = \frac{4\pi^2 (1.5 \times 10^{11} m)}{(3.155 \times 10^7 s)^2}$$

$$a_{radial} = 0.006 \ m/s^2$$

Sometimes we quote accelerations relative to g (9.81 m/s 2).

$$a_{radial_{2014}} = 0.006 \ m / s^2 \times \frac{1g}{9.81 \ m^2/s^2} \approx 0.0006 \ g = 0.06\% \ of g$$

Any other examples of circular motion?

What is the centripetal force in this case?

The Earth circles the Sun at an average distance of $1 \text{ AU} = 1.5 \times 10^{11} \text{ m}$ in 1 year.

What's causing the centripetal acceleration?

- A) The electrostatic force between the Earth and Sun.
- B) The tension in the string connecting the Earth to the Sun.
- C) The force of gravity between the Earth and the Sun.
- D) Depends on the time of day.