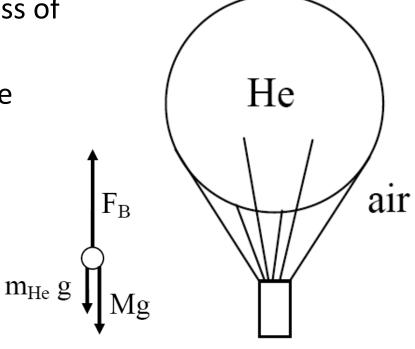
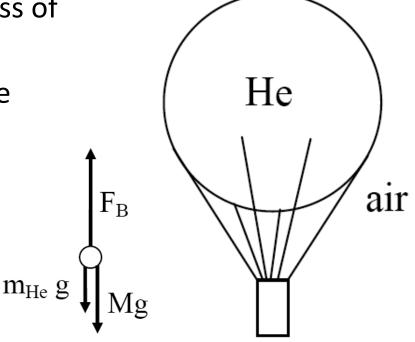
Spring 2014


PHYS-2010

Lecture 42

A helium-filled balloon of volume *V* can carry a total mass *M* (*M* includes the mass of the rubber balloon but not the mass of the Helium inside).

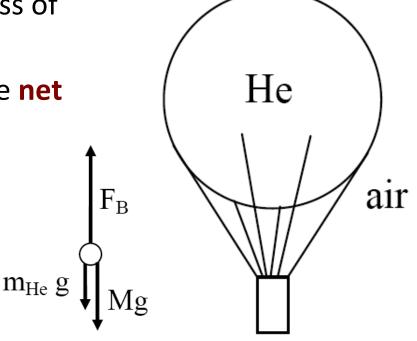
What is the correct expression for the **buoyant** force F_B on the balloon?


- A) ρ^{air} V g
- B) $\varrho^{\text{helium}} V g M g$
- C) Mg
- D) $(\varrho^{air} \varrho^{helium}) V g M g$

A helium-filled balloon of volume *V* can carry a total mass *M* (*M* includes the mass of the rubber balloon but not the mass of the Helium inside).

What is the correct expression for the **buoyant** force F_B on the balloon?

- A) $\rho^{air} V g$
- B) $\varrho^{\text{helium}} V g M g$
- C) Mg
- D) $(\varrho^{air} \varrho^{helium}) V g M g$



Weight of displaced fluid

A helium-filled balloon of volume *V* can carry a total mass *M* (*M* includes the mass of the rubber balloon but not the mass of the Helium inside).

What is the correct expression for the **net** force F_{net} on the balloon?

- A) $\rho^{air} V g$
- B) $\varrho^{\text{helium}} V g M g$
- C) Mg
- D) $(\varrho^{air} \varrho^{helium}) V g M g$

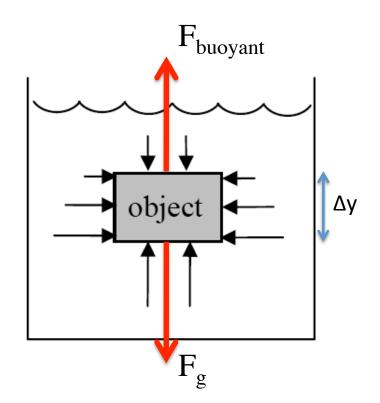
Helium has weight!

Announcements

- Finish Giancoli Chapter 10 and start Chapter 11.
- Special Study Session by Prof. Pollock and Rosemary Wulf, Tuesday, April 29, 5-6 pm in G125.
- This week in sections: Review Recitation and Lab makeup (Labs 4-8). Attendance required.

Final Exam:

- Monday, May 5, 1:30-4:00, in G1B30.
- Cumulative, but with more focus on last chapters.
- Practice exam posted on D2L.


Motion of Submerged Objects: Sinking and Floating

When will an object sink or float?

$$F_{\text{buoy}} = m_{\text{fluid}} g$$

$$F_g = -m_{object} g$$

$$F_{\text{net}} = m_{Fluid}g - m_{Object}g$$

Object will rise:

 $F_{buoy} > |F_g| \quad (m_{fluid} > m_{object})$

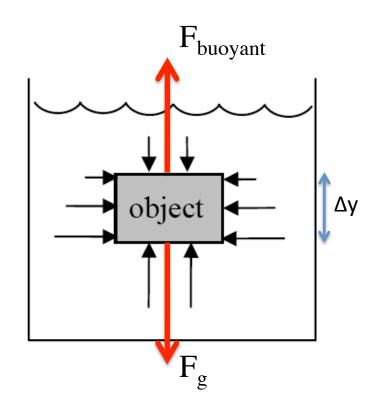
Object will sink:

 $F_{buov} < |F_g|$ $(m_{fluid} < m_{object})$

Object will be in equilibrium:

 $F_{buov} = |F_g|$ $(m_{fluid} = m_{object})$

Motion of Submerged Objects: Sinking and Floating


Since F_{buoy} and F_{g} both depend on the **same volume V**, we can also write

Object will rise: $Q_{\text{fluid}} > Q_{\text{object}}$

Object will sink: $Q_{\text{fluid}} < Q_{\text{object}}$

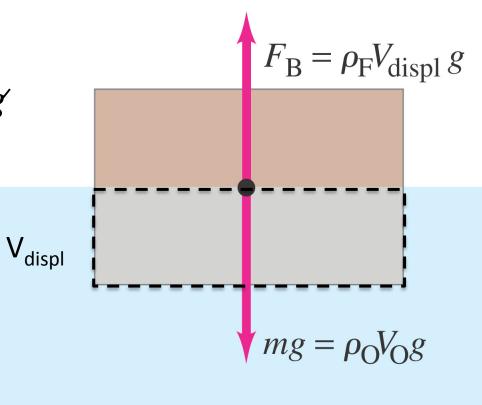
Object will be in equilibrium:

 $Q_{\text{fluid}} = Q_{\text{object}}$

Floating objects

Floating Object: Displaces a mass of water equal to its mass.

$$F_B = mg$$


 $\rho_{\textit{fluid}} V_{\textit{displaced}} \mathbf{Z} = \rho_{\textit{object}} V_{\textit{object}} \mathbf{Z}$

mass of fluid displaced =

mass of the object

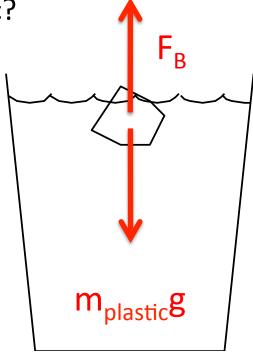
or

$$rac{V_{displaced}}{V_{object}} = rac{
ho_{object}}{
ho_{fluid}}$$

Copyright © 2005 Pearson Prentice Hall, Inc.

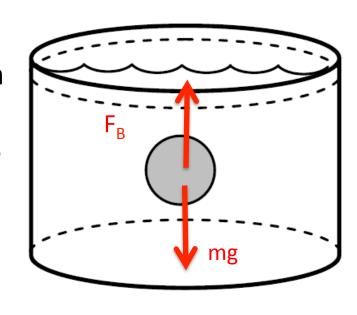
What fraction of a piece of Aluminum will be submerged if it is placed in a tank of Mercury? $(\rho_{Al} = 2.7 \times 10^3 \text{ kg/m}^3, \rho_{Hg} = 13.6 \times 10^3 \text{ kg/m}^3)$

$$\frac{V_{displaced}}{V_{object}} = \frac{\rho_{object}}{\rho_{fluid}}$$


- A) 20%
- B) 40%
- C) 60%
- D) 80%

$$V_{displaced} = \left(\frac{\rho_{object}}{\rho_{fluid}}\right) V_{object} = \left(\frac{2.7 \times 10^3}{13.6 \times 10^3}\right) V_{object} = 0.2 V_{object}$$

The volume of the Mercury displaced is the volume of the Aluminum that will be submerged.


A solid piece of plastic of volume V, and density $\rho_{plastic}$ is floating partially submerged in a cup of water. (The density of water is ρ_{water} .) What is the buoyant force on the plastic?

- A) Zero
- B) $\rho_{plastic} V$
- C) $\rho_{water} V$
- D) $\rho_{water} V g$
- E) ρ_{plastic} V g

The plastic is in equilibrium so $F_B = m_{plastic}g = \rho_{plastic}Vg!$

A carefully-made sphere, when placed under water, remains at rest, in equilibrium as shown above. How does the magnitude of the upward buoyant force $F_{\rm B}$ compare to the gravitational force mg on the sphere?

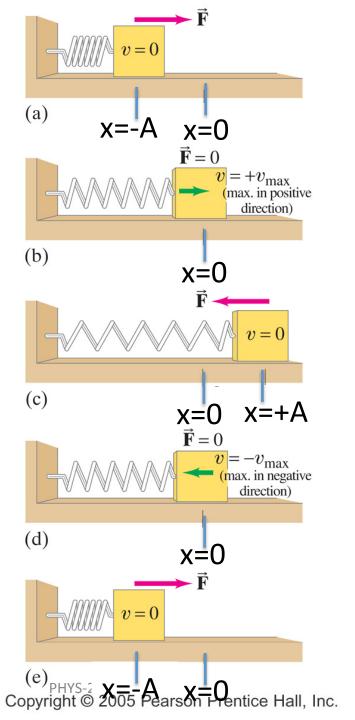
A)
$$F_B > mg$$

B)
$$F_B = mg$$

C)
$$F_{\rm R} < mg$$

OSCILLATIONS AND WAVES

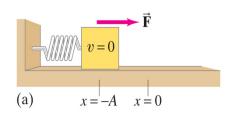
Throughout nature things are bound together by forces that allow things to oscillate back and forth.

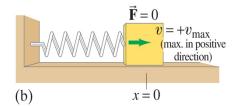

It is important to get a deeper understanding of these phenomena!

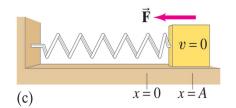
We'll focus on the most common and the most simple oscillation: Simple Harmonic Motion (SHM)

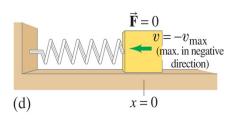
Requirements for SHM:

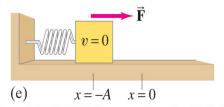
- 1) A restoring force proportional to the displacement from equilibrium.
- 2) The range of the motion (amplitude) is independent of the frequency.
- Position, velocity, and acceleration are all sinusoidal (harmonic) in time.

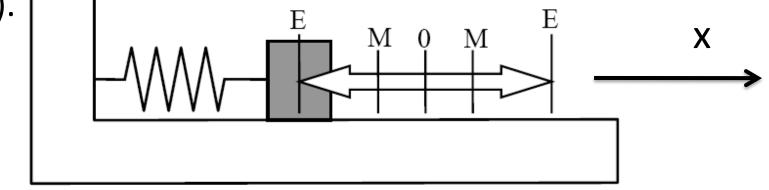

Mass and Spring




A Simple Harmonic Oscillator: Mass on a Spring


$$F = ma = -kx$$
 (Hooke's Law)

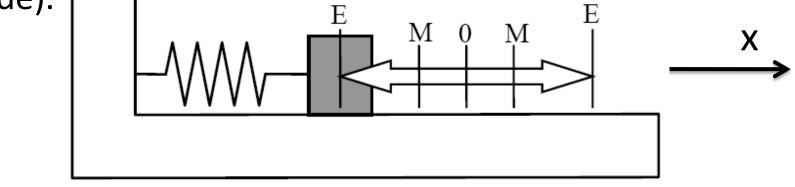

- **Restoring force** is proportional to displacement.
- The force is not constant, so acceleration isn't either: a = -(k/m)x.
- "Amplitude" A is the maximum displacement x_{max} , occurs with v = 0.
- Position oscillates between x=A and x=-A.
- Maximum speed v_{max} occurs at x=0.
- Cycle is the full extent of motion as shown.
- Time to complete 1 cycle is called the period T.
- Frequency f is the # of cycles per second:



Copyright © 2005 Pearson Prentice Hall, Inc.

A mass on a spring is oscillating back and forth on a frictionless table as shown. Position **0** is the equilibrium position and position **E** is the extreme position (its amplitude).

At which position is the magnitude of the acceleration of the mass maximum?


A) 0

- B) M
- C) E
- D) a is constant everywhere

Net force = -kx

Acceleration = (Net Force/mass) =
$$-(k/m)x$$

A mass on a spring is oscillating back and forth on a frictionless table as shown. Position **0** is the equilibrium position and position **E** is the extreme position (its amplitude).

At what position is the total mechanical energy (PE + KE) a maximum?

A) 0

B) M

C) E

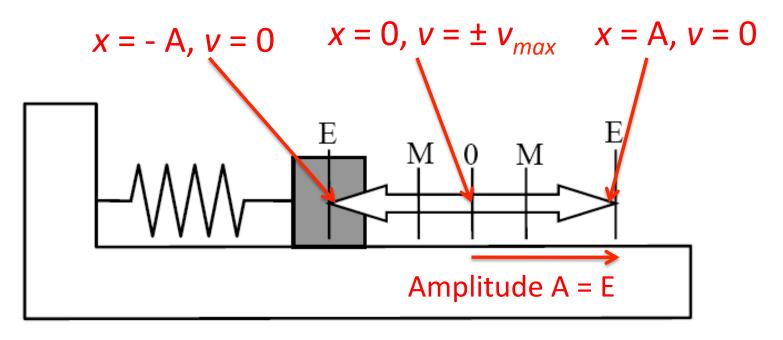
D) energy is constant everywhere.

No friction or dissipative forces! Energy is conserved.

Energy Analysis of Horizontal Spring and Mass

Total Mechanical Energy
$$E_{tot} = PE + KE$$

PE for spring with equilibrium at x = 0 is


$$PE = \frac{1}{2}kx^2$$

As usual, KE = $\frac{1}{2}mv^2$

$$E_{tot} = \frac{1}{2}kx^2 + \frac{1}{2}mv^2$$

Once oscillator is set in motion, total energy is constant, hence we can always determine x from v or v from x if we know E_{tot} .

Special Points of Horizontal Spring and Mass Oscillation

$$E_{tot} = \frac{1}{2}kx^2 + \frac{1}{2}mv^2$$

At turning points $x = \pm A$, v = 0, $E_{tot} = PE = \frac{1}{2}kA^2$.

At equilibrium point x = 0, $v = \pm v_{max}$, $E_{tot} = KE = \frac{1}{2} m v_{max}^2$.

4/28/2014 PHYS-2010 18