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Rotational Motion 

 
We are going to consider the motion of a rigid body about a fixed axis of rotation.   

 

The angle of rotation is measured in radians:      
s

(rads)   (dimensionless)
r

   

 

Notice that for a given angle , the ratio s/r is 

independent of the size of the circle. 

 

 

 

 

 

 

Example: How many radians in 180
o
?    Circumference C = 2 r  

rs
  = rads

r r


               rads = 180

o
,  1 rad = 57.3

o
  

 

 

Angle of a rigid object is measured relative to some reference orientation, just like 1D position 

x is measured relative to some reference position (the origin). 

 

Angle  is the "rotational position".   

Like position x in 1D, rotational 

position  has a sign convention.  

Positive angles are CCW (counter-

clockwise).  

 

 

Definition of angular velocity:      (rad/s)
t


 


  ( like 

x
v   

t





) 

 

In 1D, velocity v has a sign (+ or –) depending on direction.  Likewise  has a sign convention, 

depending on the sense of rotation. 

 

v : 
(+) 

(–) 



(+) (–) 

s 

r 


s 

r 



s =  r 

r 



x 



0 


x + 

x  
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For rotational motion, there is a relation between tangential velocity v (velocity along the rim) 

and angular velocity .   
s

   s = r  
r


     ,  

rs
v  =  = r

t t


 

 
 

 

v  =  r 

 

 

Definition of angular acceleration :   2   (rad/s )
t


 


  ( like 

v
a   

t





) 

 

  =  rate at which  is changing. 

 = constant      = 0         speed v along rim = constant = r 



Equations for constant : 

 

Recall from Chapter 2:  We defined 
x v

v =  , a = 
t t

 

 
 , 

and then showed that, if a = constant,     

0

21
20 0

2 2

0 0

v = v a t

x x v t a t

v v 2 a x x

 



  


  
( )

 

 

Now, in Chapter 8, we define  =  ,  = 
t t

 
 

 
.   

So, if  = constant,     

0

21
20 0

2 2

0 0

 = t

t t

2

   


      

       

( )

 

 

Same equations, just different symbols. 

 

Example:  Fast spinning wheel with 0 = 50 rad/s   ( about 8 rev/s ).  Apply brake and wheel 

slows at  = 10 rad/s.  How many revolutions before the wheel stops?   

Use 2 2

0 2      ,  final = 0   
2 2

2 0
0

50
0 2 125 rad

2 2 10


           

 ( )
 

1 rev
125 rad 19 9 rev

2  rad
 


.  



s in 

time t 
r 




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


Definition of tangential acceleration atan   =  rate at which speed v along rim is changing 

r rv
a    =

t t t

  
 

  
tan

( )
  atan   =   r    

 

atan is different than the radial or centripetal acceleration   
2

r

v
a

r
  

ar is due to change in direction of velocity v 

atan is due to change in magnitude of velocity, speed v 

 

atan and ar are the tangential and radial components of the 

acceleration vector a. 

 

 
2 2

tan r| a | a a a  


 

 

 

 

Angular velocity  also sometimes called angular frequency. 

Difference between angular velocity  and frequency f: 

 
# radians

sec
     ,  

# revolutions
f

sec
  

 

T   =  period  =  time for one complete revolution (or cycle or rev)    

 
2  rad 2

T T

 
    , 

1 rev 1
f

T T
    2 f    

 

Units of frequency f  =  rev/s  =  hertz (Hz) .  Units of angular velocity = rad /s = s
-1

 

 

Example: An old vinyl record disk with radius r = 6 in = 15.2 cm is spinning at 33.3 rpm 

(revolutions per minute).   

 What is the period T?     
33 3 rev 33 3 rev 60s 60 33 3 s

1 80 s/rev
1min 60s 33 3rev 1rev

. . ( / . )
.

.
     

  period T = 1.80 s 

 What is the frequency f ?    f  =  1 / T  =  1 rev / (1.80 s)  =  0.555 Hz 

 What is the angular velocity  ?  12 f 2 0 555 s 3 49 rad s( . ) . /       

 What is the speed v of a bug hanging on to the rim of the disk?  

atan a 

ar 
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 v  =  r w = (15.2 cm)(3.49 s
-1

)  = 53.0 cm/s 

 What is the angular acceleration  of the bug?   = 0 , since  = constant 

 What is the magnitude of the acceleration of the bug?  The acceleration has only a radial 

component ar , since the tangential acceleration atan  =  r   =  0.   

a  =  

22
2

r

0 530 m/sv
a 1 84 m/s

r 0 152 m

( . )
.

.
      (about 0.2 g's) 

 

As we shall see, for every quantity in linear (translational) motion, there is an analogous quantity 

in rotational motion: 

Translation  Rotation 

   x       

x
v

t





   =  
t





 

v
a

t





   =  
t





 

     F       (?) 

     M       (?) 

 F = Ma       (?) = (?)   

 

 

The rotational analogue of force is torque. 

Force F causes acceleration a             torque causes angular acceleration 

 

The torque (pronounced "tork") is a kind of "rotational force".    

 

magnitude of torque:    r F           r F m N    

r = "lever arm" = distance from axis of rotation to point of application of force 

F = component of force perpendicular to lever arm 
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Example: Wheel on a fixed axis: 

Notice that only the perpendicular 

component of the force F will rotate 

the wheel.  The component of the 

force parallel to the lever arm (F||)   

has no effect on the rotation of the 

wheel. 

 

 

 

 

 

 

 

 

If you want to easily rotate an object about an axis, you want a large lever arm r and a large 

perpendicular force F: 

 
Example: Pull on a door handle a distance r = 0.8 m from the hinge with a force of magnitude F 

= 20 N at an angle  = 30
o
 from the plane of the door, like so: 

 = r F = r F sin  =  

(0.8 m)(20 N)(sin 30
o
) = 8.0 mN 

 

 

 

 
Torque has a sign (+ or –) : 

Positive torque causes counter-clockwise CCW rotation. 

Negative torque causes clockwise (CW) rotation. 

 

If several torques are applied, the net torque causes angular acceleration. 

r 

F 

  =  r F 

Another example: 

a Pulley 

axis 

no good! 

(r = 0) 

bad better best 

no good! 

(F = 0) 

axis r 

F 



F 

F
 
= F sin 

F|| 

+  –  

hinge 
F F 

r 


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net      

 

To see the relation between torque  and angular acceleration  , consider a mass m at the end of 

light rod of length r, pivoting on an axis like so: 

 
 

Apply a force F to the mass, keeping the force perpendicular to the lever arm r. 

 

 

acceleration atan  =  r 


Apply Fnet = m a, along the tangential direction: 

 

F  =  m atan  =  m r 



Multiply both sides by r  ( to get torque in the game ):   r F  =  (m r
 2

) 


Define  "moment of inertia" =  I  =  m r

 2
   

 

    =  I    ( like F  =  m  a ) 

 

 

Can generalize definition of I: 

 

Definition of moment of inertia of an extended object 

about an axis of rotation: 

 
2 2 2

i i 1 1 2 2

i

I m r m r m r    ...     

 

 

Examples: 

 2 small masses on rods of length r: 

   

 

 I = 2 m r
2
 

 

 

 A hoop of total mass M, radius R, with axis through the center, has Ihoop  = M R
2
   

axis 
r m 

axis F 

F 

axis ri 

m i 

axis m m 

r r 
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2 2 2

i i i

i i

I m r m R M R
 

   
 

   

(since ri = R for all i ) 

 

In detail: 

 
2 2 2 2 2 2

1 1 2 2 3 3 1 2 3

2 2

1 2 3

I m r m r m r m R m R m R

m m m R MR( )

       

    

 


 

 

 

  A solid disk of mass M, radius R, with axis through the center:  

Idisk  = (1/2) MR
2
   (hard to show) 

 

 

 

 

 

Moment of inertia I is a kind of "rotational mass". 

 

Big I       hard to get rotating   ( like Big M    hard to get moving )  

 

If I is big, need a big torque  to produce angular acceleration according to 

 

 net  =  I    ( like Fnet = m a ) 

 

 

 

Example:  Apply a force F to a pulley consisting of solid disk of radius R, mass M.   = ? 

 21
2

I

2 F
R F MR

M R

  

      

 

Rotational Kinetic Energy 

 

How much KE in a rotating object?  Answer:   21
rot 2

KE I    (like 21
trans 2

KE m v ) 

R 

F 

R 

mi 

R 

mass M 
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Proof:    21
tot i i2

i

KE ( m v )   

i iv r , v r      

2 2 2 21 1 1
i i i i2 2 2

i i

KE ( m r ) m r I
 

      
 

   

 

How much KE in a rolling wheel? 

 The formula v = r   is true for a wheel spinning about 

a fixed axis or rolling on the ground. 

 

 

 

 

 

 

 

 

To see why, look at situation from the bicyclist's point of view: 

 

 

 

 

 

_________________________*______________________________ 

Rolling KE: Rolling wheel simultaneously translating and rotating: 

 

 

 

 

 

 2 21 1
tot 2 2

KE M v I    

axis ri 

m i 


v 


v = center of 

mass velocity 



axis stationary 

v 

v 

point touching ground  

instantaneously at rest 



v 

axis stationary, 

ground moving 
v 

= + 

KEtot  = KEtrans  + KErot 
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Conservation of energy problems with rolling motion: 

A sphere, a hoop, and a cylinder, each with mass M and radius R, all start from rest at the top of 

an inclined plane and roll down to the bottom.  Which object reaches the bottom first? 

 

 

Apply Conservation of Energy to determine vfinal.  Largest vfinal will be the winner. 



i i f f

2 21 1
2 2

KErotKEtrans

KE PE KE PE

0 Mgh M v I 0

  

    


 

Value of moment of inertia I depends on the shape of the rolling thing: 

Idisk = (1/2)M R
2
 ,  Ihoop = M R

2
 ,  Isphere = (2 / 5)M R

2
   (Computing the coefficient can be messy.) 

 

Let's consider a disk, with I = (1/2)MR
2
.  For the disk, the rotational KE is 

2

2 2 21 1 1 1
2 2 2 4

v
I ( M R ) M v [used v / r]

R

 
    

 
 

2 2 2 231 1 1 1
2 4 2 4 4

23 4
4 3

M g h M v M v ( )M v M v

g h v , v g h 1.16 g h

     

  
 

Notice that final speed does not depend on M or R.   

 

Let's compare to final speed of a mass M, sliding down the ramp (no rolling, no friction). 

21
2

M g h M v (M's cancel)

v = 2 g h 1.4 g h



 

 

 

Sliding mass goes faster than rolling disk.  

Why? 

vf = 

 v =? 

R M 

(vi = 0) 



h 

vf = 

 v =? 

M 

(vi = 0) 



h 
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As the mass descends, PE is converted into KE.  With a rolling object, KEtot = KEtrans + KErot , so 

some of the PE is converted into KErot  and less energy is left over for KEtrans.  A smaller KEtrans 

means slower speed (since KEtrans = (1/2) M v
2
 ).  So rolling object goes slower than sliding 

object, because with rolling object some of the energy gets "tied up" in rotation, and less is 

available for translation. 

Comparing rolling objects:  Ihoop  >  Idisk  >   Isphere    Hoop has biggest KErot  =  (1/2) I 
2
,  

hoop ends up with smallest KEtrans   hoop rolls down slowest, sphere rolls down fastest. 

 

Angular Momentum  = "Spin" 

Definition of angular momentum of a spinning object:  L  I  ( like p = m v ) 

 

If something has a big moment of inertia I and is spinning fast (big ), then it has a big "spin", 

big angular momentum. Angular momentum is a very useful concept, because angular 

momentum is conserved. 

 

Conservation of Angular Momentum: If a system is isolated from external torques, then its 

total angular momentum L is constant. 

ext = 0    Ltot = constant   ( like Fext = 0    ptot = constant ) 

 

Here is a plausibility argument for conservation of angular momentum (proof is a bit too messy):   

First, we argue that net

L

t


 


 ( like net

p
F

t





 )  , 

net

(I ) L
I I (assuming I const) =

t t t

   
    

  
    

 ( This turns out to be true even if I  constant ) 

So now net

L

t


 


      if  = 0 , then 

L
0 L constant

t


  


 

It turns out that only 4 things are conserved: 

 Energy 

 Linear momentum p 

 Angular momentum L 

 Charge q 
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Conservation of Angular Momentum is very useful for analyzing the motion of spinning objects 

isolated from external torques  — like a skater or a spinning star. 

 

If  ext = 0 , then  L = I = constant.  If I decreases,  must increase to keep L = constant. 

 

Example: spinning skater. 

 
 

Example: rotation of collapsing star.  A star shines by converting hydrogen (H) into helium 

(He) in a nuclear reaction.  When the H is used up, the nuclear fire stops, and gravity causes the 

star to collapse inward. 

 
As the star collapses (pulls its arms in), the star rotates faster and faster.  Star radius can get 

much smaller: Ri  1 million miles    Rf  30 miles 

 

   

22
i i f f 5

2 22 2
i i f f5 5

2 2

i i f f

2

i f i

2

f i f

I I (Sphere I = M R )

M R M R

R R

R T 2
( using = 2 f )

R T T

  

  

  

 
    



 

 

If Ri >> Rf,  then Ti >>>>Tf .   

 

The sun rotates once every 27 days.  "Neutron stars" with diameter of about 30 miles typically 

rotates 100 time per second. 

Ii  i    =         If  f 

(I big,   small)  (I small,   big)  

nuclear 

gravity 

slow 

fast!

! 
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Let's review the correspondence between translational and rotational motion 

Translation  Rotation 

      x       

x
v

t





   =  
t





 

v
a

t





   =  
t





 

       F    = r F 

       M   I =  m r
2 

 Fnet = M a  net  = I   

 KEtrans = (1/2)M v
2
  KErot = (1/2 ) I 

2
 

 p = m v  L = I 

       Fnet = p / t  net = L / t 

If Fext  = 0, ptot = constant   If ext  = 0, Ltot = constant  
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Appendix: 

Moments of Inertia for some shapes: 

 

 

  

 

L 

L 

R 

Hoop 

I = M R
2 

Disk 

I = (1/2) M R
2 

Solid sphere 

I = (2/5) M R
2 

Thin spherical shell 

I = (2/3) M R
2 

Thin rod, axis thru center 

I = (1/12) M L
2 

Thin rod, axis thru end 

I = (1/3) M L
2 


