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Simple Harmonic Motion 
 
A pendulum, a mass on a spring, and many other kinds of oscillators exhibit a special 
kind of oscillatory motion called Simple Harmonic Motion (SHM).   
 
SHM occurs whenever : 

• there is a restoring force proportional to the displacement from equilibrium. 
• the period T or frequency f = 1 / T is independent of the amplitude of the motion. 
• the position x, the velocity v, and the acceleration a are all sinusoidal (or harmonic) 

in time. 

 

x v

t t

Any one of these three properties guarantees the other two.  If one of these 3 things is 
true, then the oscillator is a Simple Harmonic Oscillator and all 3 things must be true. 
 
Not every kind of oscillation is SHM.  For instance, a perfectly elastic ball bouncing up 
and down on a floor: the ball's position (height) is oscillating up and down, but none of 
the 3 conditions above is satisfied, so this is not an example of SHM.   
 
A mass on a spring is the simplest kind of Simple Harmonic Oscillator. 

 
 

k  Hooke's Law:  Fspring = – k x 
 
(–) sign because direction of Fspring is 
opposite to the direction of displacement 
vector x 
  
 
k = spring constant = stiffness, 
units [k] = N / m 
 
Big k = stiff spring 
 

 
Recall PEelastic = (1/2) k x2 = work done to compress or extend spring by distance x. 
 
Definition: amplitude A  =  |xmax|  =  |xmin|.  
 
Mass oscillates between extreme positions x = +A and x = –A   
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SHM and Conservation of Energy: 
 
If no friction, then total energy Etot = KE + PE = constant during oscillation.  The value of 
Etot depends on initial conditions – where the mass is and how fast it is moving initially.  
But once the mass is set in motion, Etot stays constant (assuming no dissipation.) 
 
At any position x, speed v is such that  2 21 1

tot2 2m v k x E+ =   .   
 
When |x| = A, then v = 0, and all the energy is PE: 

2
tot

0 (1/ 2)kA

KE PE E+ =   

So total energy 21
tot 2E k= A  

 
When x = 0, v = vmax, and all the energy is KE: 

2
max

tot
0(1/ 2)mv

KE PE E+ =  

So, total energy 21
tot max2E m v= .  

 
So, can relate vmax to amplitude A :   PEmax = KEmax = Etot  ⇒   2 21 1

max2 2k A m v= ⇒ 
 

max
kv A
m

=  

 
Example Problem:  A mass m on a spring with spring constant k is oscillating with 
amplitude A.  Derive a general formula for the speed v of the mass when its position is x. 

Answer: 
2k xv(x) A 1

m A
⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 

 
Understand these things: 
 
 range of motion 
 
 
 x  =  0 

|x| = A  |v| = max 
 v = 0  PE = min 
PE = max  KE = max 
KE = min  |F| = 0 
|F| = max  |a| = 0 
|a| = max  
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SHM and circular motion 
 
It turns out that there is an exact analogy between SHM and circular motion.  Consider a 
particle moving with constant speed v around the rim of a circle of radius A.   
The x-component of the position of the particle has exactly the same mathematical form 
as the motion of a mass on a spring executing SHM with amplitude A. 

 
v 

angular velocity 
t

∆θ
ω =

∆
   ⇒ 

A 
tθ = ω    so 

θ  
x A cos A cos t= θ = ω    x 
This same formula also describes the sinusoidal 
motion of a mass on a spring. 
 
 
 

 
Let's review the sine and cosine functions and their relation to the unit circle.    We often 
define the sine and cosine functions this way: 

 
adjcos
hyp

θ =  

 
oppsin
hyp

θ =  

 
This way of defining sine and cosine is correct but incomplete.  It is hard to see from this 
definition how to get the sine or cosine of an angle greater than 90o. 
 
A more complete way of defining sine and 
cosine, a way that gives the value of the sine and 
cosine for any angle, is this: Draw a unit circle (a 
circle of radius r = 1) centered on the origin of 
the x-y axes as shown here: 
 
Define sine and cosine as 

adj xcos x
hyp 1

θ = = =  

opp ysin y
hyp 1

θ = = =  

 
This way of defining sin and cos allows us to compute the sin or cos of any angle at all.   

+A –A 

0 

hypotenuse opposite 

θ 
adjacent 
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y 

θ 

point (x, y) 

r = 
1
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For instance, suppose the angle is θ = 210o.  Then the 
diagram looks like this:   
 

θThe point on the unit circle is in the third quadrant, where 
both x and y are negative.  So both cosθ = x and 
sinθ = y are negative 

x 

y 

 

1  
 
 

point (x, y)  
 
For any angle θ, even angles bigger than 360o (more than once around the circle), we can 
always compute sin and cos.  When we plot sin and cos vs angle θ, we get functions that 
oscillate between +1 and –1 like so: 
 

 
 
We will almost always measure angle θ in radians. Once around the circle is 2π radians, 
so sine and cosine functions are periodic and repeat every time θ increases by 2π rad.  
The sine and cosine functions have exactly the same shape, except that sin is shifted to 
the right compared to cos.  Both these functions are called sinusoidal functions. 
 
Now back to simple harmonic motion.  Instead of a circle of radius 1, we have a circle of 
radius A (where A is the amplitude of the Simple Harmonic Motion). 
 
We aim to show that, for a simple harmonic oscillator consisting of a mass m on spring 
with constant k, if the period is T, then the position as a function of time t is given by: 
 

( )x A cos t= ω   where 2
T
π

ω ≡    and, furthermore, ω is related to the k and m by  

 
k
m

ω =  

 
Let's first try to make sense of this:  big ω means small T which means rapid oscillations.  
According to our formula ω = √(k/m) , we get a big ω when k is big and m is small.  This 
makes sense: a big k (stiff spring) and a small mass m will indeed produce very rapid 
oscillations and a big ω.  
 

cos θ 

θ 

sin θ θ = 3600 

+1 
θ 

–1 

+1 

–1 
θ = 3600 
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Ok, so where does this formula ω = √(k/m) come from and what's the connection with 
circular motion? 
 
Newton's 2nd law (in 1D) is Fnet = m a .  Applying this to a mass on a spring (Fnet = –kx) 
we get   

k x m a− =     or      ka x
m

= −   (1) 

This equation says:  (acceleration a) = – (positive constant) × (position x) .  This is called 
an equation of motion.  Anytime we have this equation of motion, then we have SHM 
since this equation is equivalent to the condition | Frestore | ∝ |displacement from 
equilibrium| . 
 
We can show that the x-component (or the y-component) of a particle moving with 
constant speed v around a circle obeys the same equation (1) [ a = –(k/m)x].  Recall that 
for circular motion with angular speed ω, the acceleration of a the particle is toward the 
center and has magnitude 

2v| a |
R

= ,  but v = ω R , so we can rewrite this as  ( )2
2R

| a | R
R

ω
= = ω  

v 

a 

 
Notice that the acceleration vector a is always in the direction opposite the displacement 
vector R .   In vector language, 2a = − ω R .  The x-component of this vector equation 
is: .  If we write Rx = x , then we have  2

xa = − ω xR
2 2 2

xa x A cos A cos t= − ω = − ω θ = − ω ω .    (2) 
This equation (2) is has the same form as equation (1):  
(acceleration) = – (positive constant) × (position). 
Comparing the positive constants in the two equations (1) and (2), we see the equations 

are identical if we set 2 k
m

ω =  . 

 

Notice 2 k T 2
T m
π m

k
= ⇒ = πω =   

 

+A –A 

0

θ 

R 

x 
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Notice that period T is independent of the amplitude A; it depends only on the mass m 
and the spring constant k. 
 
 
Pendulum Motion 
 
A simple pendulum consists of a small mass m suspended at the end of a massless string 
of length L.  A pendulum executes SHM,  if the amplitude is not too large. 

 
 

xrestoring force  =  mgsin mg mg
L

− θ ≅ − θ = −  

Claim: when θ is small.  sin (rads)θ ≅ θ
hsin
L

θ =  

s
R

θ =  

 
If θ small, then h ≈ s, and L ≈ R, 
so sin θ ≈ θ . 
 
 

Try it on your calculator:  θ = 5o = 0.087266..  rad 
           sin θ = 0.087156.. 
 

restore
mgF
L

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

x x   is exactly like Hooke's Law  restoreF k= − , except we have 

replace the constant k with another constant (mg / L).  The math is exactly the same as 
with a mass on a spring; all results are the same, except we replace k with (mg/L). 
 

( )spring pend
m mT 2 T 2 2
k mg / L

= π ⇒ = π = π
L
g

 

 
Notice that the period is independent of the amplitude; the period depends only on length 
L and acceleration of gravity.  (But this is true only if θ is not too large.) 

L 

Forces on mass :

x 

θ FT = tension 

mg sinθ
mg cosθ 

θ 

mg
θ = x / L  (rads) 

L 

R 

θ 

h 
s

11/27/2006  © University of Colorado at Boulder 


