Phys2020: Exam 1. Feb 12, '15. 7:30-9:15 PM

Your Name (please print neatly!) _____

For grader use

А	
 В	
С	
D	

TA's name (Circle one!!)

Student ID #

Oscar Henriksson	Adam Higuera		lan	lan Leahy		
Nick Pellatz	Devin Rourke		Keit	Keith Tauscher		
Day your lab meets (Circle one!!) Tue Wed Thu						
Time your lab starts (C	ircle one!!)	8	10	12	2	

Please follow these instructions before you start the exam!

Fill in the lines above, and *circle* your TA + the day and time of your lab.

Write in *and bubble in* your name *and* your ID # on the bubble sheet!

Write *and* bubble the exam version (X) in the space (top left of the bubble sheet.)

Double check all the above! Then, please wait until a TA announces you may begin.

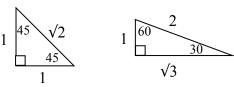
There are 14 multiple choice questions followed by 3 pages of long answer questions

For **Multiple choice questions:** Please BUBBLE IN your answer on the bubble sheet. Answers circled on this sheet will NOT be used for grading purposes!! Use a #2 pencil. Erase mistakes carefully. If you can't thoroughly erase, ask for a fresh bubble sheet. At the end, *check* that you have bubbled in *one* answer only, for all questions.

Multiple choice problems are 4 pts each (56 pts total).

Long answer questions: Write **on this exam** (not the bubble sheet). Please write neatly! Long answer problem parts are worth 4 pts * 4 parts = 16 pts total.

PLEASE turn in your exam in the proper pile up front! Ask if it's confusing - thanks!


"On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work"

Signature _____

This exam is double sided, please look at the backs of pages!

Useful constants:

 $k = 9x10^9 \text{ N m}^2/\text{C}^2,$ $e = 1.6x10^{-19} \text{ C},$

On this exam, please neglect gravitational forces unless we explicitly say otherwise.

Some Units:

Units of [force] = $[N] = [kg^*m/s^2]$, Units of [energy, or work] = $[J] = [N^*m] = [kg^*m^2/s^2]$

Useful Formulas:

Newton's Second Law $\vec{F}_{net} = m\vec{a}$ Work = $\vec{F} \cdot \vec{d}$,

Coulomb's Law $|F_{elec}| = \frac{k|q_1||q_2|}{r^2}$

Electric Fields

$$\vec{E} = \frac{\vec{F}}{q}$$

Special cases of the above: $|E_{near\ a\ point\ charge}| = \frac{k|q|}{r^2}$ For uniform fields (or short distances), $|\vec{E}| = \left|\frac{\Delta V}{\Delta d}\right|$

Electric Potential (or "Voltage")

 $\Delta V = \frac{\Delta P E}{q}$

Special cases of the above: $V_{near\ a\ point\ charge\ q} = \frac{kq}{r}$, $\Delta V_{in\ uniform\ field} = -Ed$ (where d is the distance parallel to the electric field)

Capacitors

 $Q = C\Delta V$, $C_{parallel \ plate} = \frac{A}{4\pi k \ d}$, stored energy in capacitor: $U = \frac{1}{2}C(\Delta V)^2 = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}Q\Delta V$