Phys2020: Exam 1, Version A, Mar 12, '15. 7:30-9:15 PM

Your Name (please print neatly!)

For grader use

Student ID #	
--------------	--

TA's name (Circle one!!)						
Oscar Henriksson	Adam Higuera		lan Leahy			
Nick Pellatz	Devin Rourl	ĸe	Keith	n Tauso	her	
Day your lab meets (Circle one!!) Tue Wed Thu						
Time your lab starts (Circle one!!)		8	10	12	2	4

А	
В	
С	
D	

Please follow these instructions before you start the exam!

Fill in the lines above, and *circle* your TA + the day and time of your lab.

Write in *and* bubble in your name and your ID # on the bubble sheet!

Write *and* bubble the exam version (A) in the space (top left of the bubble sheet.)

Double check all the above! Then, please wait until a TA announces you may begin.

There are XX multiple choice questions followed by XX pages of long answer questions

For **Multiple choice questions:** Please BUBBLE IN your answer on the bubble sheet. Answers circled on this exam will NOT be used for grading purposes!! Use a #2 pencil. Erase mistakes carefully. If you can't thoroughly erase, ask for a fresh bubble sheet. At the end, *check* that you have bubbled in *one* answer only, for all questions.

Multiple choice problems are YY pts each

Long answer questions: Write **on this exam** (not the bubble sheet). Please write neatly! Long answer problem parts are worth ZZ pts each

PLEASE turn in your exam in the **proper pile** up front! Ask if it's confusing - thanks!

"On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work"

Signature _____

This exam is double sided, please look at the backs of pages!

Useful constants:

k = $9x10^9$ N m²/C², μ_0 = 4 π x10⁻⁷ T m/A e = $1.6x10^{-19}$ C,

$1 \begin{array}{c} 45 \\ 45 \\ 45 \\ 1 \end{array} \qquad 1 \begin{array}{c} 60 \\ -30 \\ \sqrt{3} \end{array}$

On this exam, please neglect gravitational forces unless we explicitly say otherwise.

Some Units:

Units of [force] = [N] = $[kg^*m/s^2]$, Units of [energy, or work] = $[J] = [N^*m] = [kg^*m^2/s^2]$ Units are Current = C/s, Units of resistance is Ω =Ohm=[J s/C²] Unit of resistivity is [Ω^*m]

Useful Formulas:

Newton's Second Law $\vec{F}_{net} = m\vec{a}$ Work = $\vec{F} \cdot \vec{d}$.

Coulomb's Law $|F_{elec}| = \frac{k|q_1||q_2|}{r^2}$

Electric Fields

$$\vec{E} = \frac{\vec{F}}{q}$$

Special cases of the above: $|E_{near\ a\ point\ charge}| = \frac{k|q|}{r^2}$ For uniform fields (or short distances), $|\vec{E}| = \left|\frac{\Delta V}{\Delta d}\right|$

Electric Potential (or "Voltage")

$$\Delta V = \frac{\Delta P}{q}$$

Special cases of the above: $V_{near\ a\ point\ charge\ q} = \frac{kq}{r}$ $\Delta V_{in\ uniform\ field} = -Ed$ (where d is the distance parallel to the electric field)

Capacitors

 $Q = C\Delta V$, $C_{parallel \, plate} = \frac{A}{4\pi k \, d}$, stored energy in capacitor: $U = \frac{1}{2}C(\Delta V)^2 = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}Q\Delta V$

Currents and circuits

Current is charge passing per second Resistance is $R = \rho L/A$, where ρ = resistivity $\Delta V = IR$ across a resistor, and power dissipated is $P = I\Delta V = I^2R = \Delta V^2/R$ Resistors in series add up, resistors in parallel obey $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$

Magnetic fields

Force on a wire in a B-field is $F = I * length * B * \sin \theta$, direction given by a "right hand rule) Force on a moving charge in a magnetic field is $F = q v B \sin \theta$ (again, a "right hand rule") Special case: $|B_{near \ a \ long \ wire}| = \frac{\mu_0}{2\pi} \frac{I}{r}$ Exam 0002 Page 2 of 7