Phys2020: Final Exam Version A for May 5, '15. 7:30-10 AM

Your Name (please print neatly!)

Student ID #

**TA's name** and your corresponding seating location (**Circle one!!**)

| Oscar Henriksson (Coors Sec 23)     | Adam Higuera (Coors Sec 20/21 upper) |
|-------------------------------------|--------------------------------------|
| lan Leahy (Coors section 20/lower)  | Nick Pellatz (Coors sec 21/lower)    |
| Devin Rourke (Coors Sec 22)         | Keith Tauscher (Coors Sec 19)        |
| Day your lab meets (Circle one!!)   | Tue Wed Thu                          |
| Time your lab starts (Circle one!!) | 8 10 12 2 4                          |

# Please follow these instructions before you start the exam!

Fill in the lines above, and *circle* your TA + the day and time of your lab.

Write in *and* bubble in your name and your ID # on the bubble sheet!

Write *and* bubble the exam version (A) in the space (top left of the bubble sheet.)

Double check all the above! Then, please wait until a TA announces you may begin.

# There are **35 multiple choice questions**

Please BUBBLE IN your answer on the bubble sheet. Answers circled on this exam will NOT be used for grading purposes!! Use a #2 pencil. Erase mistakes carefully. If you can't thoroughly erase, ask for a fresh bubble sheet.

At the end, *check* that you have bubbled in *one* answer only, for all questions.

All multiple choice questions are equally weighted.

PLEASE <u>IGNORE</u> EARTH'S GRAVITY AND THE EARTH'S MAGNETIC FIELD IN ALL QUESTIONS (unless explicitly stated otherwise)

PLEASE turn in your exam in the proper TA pile up front!

# "On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work"

Signature \_\_\_\_\_

# This exam is double sided, please look at the backs of pages!

Exam 0004 VERSION A Page 1 of 16

## Useful constants:

 $k=9x10^9$  N m<sup>2</sup>/C<sup>2</sup>,  $\mu_0=4 \pi x10^{-7}$  T m/A,  $e=1.6x10^{-19}$  C

## Some Units:

Units of [force] = [N] = [kg\*m/s<sup>2</sup>], Units of [energy, or work] = [J] = [N\*m] = [kg\*m<sup>2</sup>/s<sup>2</sup>] Units of current = [A] = [C/s], Units of resistance is  $\Omega$ =Ohm=[J s/C<sup>2</sup>], Unit of resistivity is [ $\Omega$ \*m]

## Useful 2010 Formulas:

Newton's 2<sup>nd</sup> Law:  $\vec{F}_{net} = m\vec{a}$ , Work =  $\vec{F} \cdot \vec{d}$ , Kin. energy =  $\frac{1}{2}mv^2$ , centripetal acceleration =  $v^2/R$ 

**Electric Fields:**  $\vec{E} = \frac{\vec{F}}{q}$ , special cases of the above:  $|E_{near\ a\ point\ charge}| = \frac{k|q|}{r^2}$ For uniform fields (or short distances),  $|\vec{E}| = \left|\frac{\Delta V}{\Delta d}\right|$ 

**Electric Potential (or "Voltage"):**  $\Delta V = \Delta P E/q$ , special cases:  $V_{near \ pt \ charge \ q} = \frac{kq}{r}$ ,  $\Delta V_{in \ uniform \ field} = -Ed$  (where d is the distance parallel to the electric field)

**Capacitors:**  $Q = C\Delta V$ ,  $C_{parallel \ plate} = \frac{A}{4\pi k \ d}$ , stored energy:  $U = \frac{1}{2}C(\Delta V)^2 = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}Q\Delta V$ 

**Currents and circuits:** Current is charge passing per second.

Resistance is  $R = \rho L/A$ , where  $\rho$  = resistivity,  $\Delta V = IR$  across a resistor, power dissipated  $P = I\Delta V = I^2 R = \Delta V^2/R$ 

Resistors in series add up, resistors in parallel obey  $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$ 

### Magnetic fields

Force on wire in a B-field is  $F = I * length * B * \sin \theta$  (direction given by a "right hand rule) Force on a moving charge in a magnetic field is  $F = q v B \sin \theta$  (again, a "right hand rule") Special case:  $|B_{near\ a\ long\ wire}| = \frac{\mu_0}{2\pi r}$ 

Special case of a charged particle in a uniform B field: the radius of the circular orbit is R = mv/qB

**Faraday's law:**  $EMF = -\frac{\Delta \Phi_{mag}}{\Delta t}$ , where  $\Phi_{mag} = BAcos\theta$ .

**Transformers:**  $\frac{V_p}{V_s} = \frac{N_p}{N_s}$ , and energy (power) conservation also tells us  $I_p V_p = I_s V_s$ 

**Electromagnetic Waves (radiation):** Speed of light c = 3E8 m/s. For any wave with speed c,  $\lambda f = c (\lambda = wavelength, f = 1/T = frequency)$  In a medium with index of refraction n, speed is c/n.

#### **Geometric Optics:**

Snell's law: for light refracting from medium 1 into medium 2,  $n_1 sin\theta_1 = n_2 sin\theta_2$ 

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$
 , and magnification  $m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$ 

**Physical Optics:** Constructive interference happens when path length difference =  $m\lambda$ , or (for the case of 2 or more slits)  $dsin\theta = m\lambda$  (where m=0, ±1,±2, etc.)

Destructive interference (from 2 slits) happens when path length difference =  $(m+1/2) \lambda$ , or  $dsin\theta = (m + \frac{1}{2})\lambda$  (where m=0, ±1,±2, etc.)

Exam 0004 VERSION A Page 2 of 16

