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Giancoli CH 17: Electric Potentials and Capacitors: 
 
We've been talking about electric forces, and the related quantity  
E = F/q, the E field, or "force per unit charge".  In 2010, after talking about 
forces, we moved on to work and energy (Ch. 6) 
 
Quick Review of work and energy: 
 
The work done by a force, F, moving something 
through a displacement "d", is  
Work = F*d, or more carefully, W = F| | d =  Fd cos(θ ). 
 
E.g. if you (an "external force") lift a book (at constant speed) up a distance 
d, 

Newton II says F_net = ma,  
i.e.          F_ext - F_g = 0      
(because, remember, if speed is constant => a=0) 
or                    F_ext =  mg. 
 
You do work W_ext = F_ext*d = +mgd 
(The + sign is because θ is 0 degrees, your force is UP,  and 
so is the displacement vector) 
The gravity field does W_field = -F_g*d = -mgd 

(The minus sign is because θ is 180 degrees, the force of gravity points 
DOWN while the displacement vector is UP) 
 
The NET work (done by all forces) is W_ext+W_field = 0, that's just the 
work-energy principle, which says W_net = ΔKE (=0, here) 
 
You did work. Where did it go? NOT into KE: it got "stored up", it turned 
into potential energy (PE). In other words, F_ext did work, which went into 
increased gravitational potential energy. 
 
For gravity, we defined this potential energy to be PE = mgy, so 
Δ PE = mg(y_final - y_initial) = + mgd   (=W_ext)  
 
(The change in PE is all we ever cared about in real problems)  
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Now, let's drop the book, and see what happens.    
There is no more "external force" touching the book (like "me" 
in the previous example), only gravity acts. (Neglect friction)   
 
Energy conservation says 
PEi + KEi = PEf + KE f ,  i.e.    mgd + 0 = 0 +

1

2
mv f

2 .   
This formula gives a quick and easy way to find v_f.   
The concept of energy, and energy conservation, is very useful! 
Another way of rewriting that equation is 
 
(PEf − PEi) + (KE f − KEi ) = 0,

i.e. ΔPE + ΔKE = 0,       or     ΔEtot = 0
 

(End of quick review of work and energy, see Ch. 6 for more details) 
 

There is an electric "analogue" of the above examples: 
 
Consider 2 charged parallel metal plates 
(called a "capacitor"), a fixed distance d 
apart. 
Between the plates, E is uniform (constant), 
and points from the “+” towards the “-“ plate.   
 
Imagine a charge +q, initially located near the 
bottom plate. 

The force on that charge is F_E=+qE   (down, do you see why?).  
(Let's totally neglect gravity here.)  
Now LIFT "q" from the bottom to the top, at constant speed: 
 
You do work W_ext = F_ext*d = +qEd 
The Electric field does W_field = -F_E*d = -qEd. 
(Do you understand those signs? Think about them!)  
 
Just like the previous case: you did work, but where did it go?  
As before, it didn't turn into KE, it turned into potential energy.   
We say the charge's electrical potential energy has increased: 
Δ PE = qE(y_final - y_initial) = + qE d   (=W_ext) 
(where y is the distance above the negative plate)   
 
We lifted the charge from a region of LOW PE (near the "-" plate) 
to a region of HIGH PE (near the "+" plate).  (Note: "up" and "down" are 
irrelevant here, you could turn the picture on its side or even upside down. 
It's not gravity in this story, it's 100% electrical energy.) 

 F_g   = mg
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Just like we defined E=F/q (dividing out q gives force/unit charge) 
let's now define something we call "electrical potential" or just "potential" = 
V = PE/q  . 
 
• Calling this quantity "potential" is really a pretty bad name, because this 
"potential" is quite DIFFERENT from "potential energy".  
• Potential has units of [energy/charge] = [Joules/Coulomb] = J/C. 
We call 1 J/C = 1 Volt = 1V 
(People use the symbol "V" for the unit volt, as well as for the quantity 
itself. Another bad choice, but we have to live with it) 
 
A change in potential is called a "potential difference", 
 
ΔV =Vf −Vi = ΔPE / q ,      and from this we see   ΔPE = qΔV . 
 
 
Example:  A car battery maintains 12 V between the 
terminals. If the headlights contain a 36 W bulb, how 
much charge is the battery moving through the bulb 
each second? (And, how many electrons is that?) 
 
Answer:  36 W = 36 Watt = 36 J/s. Each second 36 
Joules of energy are dissipated in a bulb.  This energy 
all comes from the loss of potential energy as charges 
flow from one terminal, through the bulb, to the other terminal.  If a charge 
"q" drops 12V, the energy lost is ΔPE = qΔV , or q*12V.  Each second, 36 J 
are lost, i.e. 
36 J= q*12 V,    or   q = (36 J)/(12 V) = (36 J)/(12 J/C) = 3 C. 
That's a lot of electric charge being moved by a car battery! 
The number of electrons going through the bulb each second is 
3C/(1.6E-19 C/electron) = 2E19 electrons.   (A heck of a lot) 
 
I was a little sneaky about signs (the charge of an electron is negative): just 
think about it.   
 
Here's a related question for you: given that it's (negative) electrons that flow 
out of a battery, which way do they go? from the "+" terminal through the 
bulb to the "-", or the other way?  
 
(The answer is from - to +. Electrons are repelled from "-", and attracted towards "+". )  
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For a parallel plate capacitor, we just found (two pages ago)  
Δ PE = + qE d, so  ΔV = ΔPE / q = (qEd) / q = E d . 
 
Here's another sketch of a capacitor: 

With gravity, you can choose to call "zero" potential energy wherever you 
want. You might choose sea level, or the tabletop, or the ground. It's the 
same story with electricity: you can pick any spot you want and call the 
electrical potential energy 0 there. We usually call this point "the ground"! 
Let's call point "a" in the diagram above "the ground" or "0 potential".  
 
Now put a charge "+q" at the point "b" in that figure. It will have a potential 
given by V(at point b) = E*d.  
It has a potential energy at point b of PE = +q*V(at b) = +qEd. 
 
It has "+" potential energy there, which makes sense. It's like a pebble up in 
the air, it can do work, just let it go!  (The upper plate repels a "+" charge, 
the lower plate attracts it: if you let it go it will run "downhill" in energy, 
from high potential to low...) 
 
Notes:  
•   E points from high V to low V (always!)  
"+" charges want to head towards low V, if you'll let them 
"-" charges want to head towards HIGH V, if you'll let them (!)  
 
•    We can talk about the “potential at a point”, or the “potential energy at a 
point”, but the numerical value depends on where we chose to call 0. 
 
We can talk about “potential differences” between points, and then it does 
NOT matter where we chose to call 0! 

 a

 d

 b  V is high here

 V is low here

 DeltaV (=V_b-V_a) = Ed > 0
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What if you're near a point charge, Q,   rather than a capacitor? 
 
What's the potential at the point "a"? 
 
1st, where do we want to call “0 potential”. 

It’s not so obvious here. A standard choice is “far away”, off at infinity. Out 
there, PE=0, V=0, seems reasonable! 
 
Now we need to think about moving a test charge "q" from far away (where 
PE=0, V=0), to the point "a". Because the work you do bringing it from 
PE=0 to the point is precisely its potential energy! 
(It's like how much work you do lifting a book from the ground, i.e. PE = 0, 
up to a height d:  it's mgd, the final potential energy) 
 
Now, Work = F*distance, and F=kQq/r^2. Unfortunately, this force changes 
as you move in from far away (r is changing). So, you really need calculus to 
figure out the work. The answer, though is very simple (and maybe you can 
even guess it, just multiply F*r...) 
 
W_ext = k Q q/r   (Notice, that's an r downstairs, not an r^2! ) 
 
So the PE at point "a" is exactly that,  PE(at "a") = k Q q/r,  or 
 
V(at "a") = PE(at "a")/q = k Q/r  .   
 
(Note that we chose V=0 to be off at infinity, to get that formula.) 
 
If Q and q are both "+", then PE=kQq/r >0.  (This makes sense: two positive 
charges want to "fly apart", they'll DO work if you'll let them. The system 
has positive potential energy. Like a rock up in the air...) 
 
Also, just like with capacitors, the potential V is big ("+") when you're near 
a positive charge Q.  (the closer, the bigger.)  
 
If Q and q are opposite signs, then PE<0. This is also correct: you would 
have to do work ON opposite charges to "pry them apart", the system has a 
negative potential energy!  We might say the system is “bound”.  

 +Q
 r  "a"
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What if there are a bunch of point charges, what's the potential? 
The voltage at any point is just the sum of the voltages arising from each of 
the individual particles (this is "superposition" again)  
It's really quite easy to find the voltage at a point because of this!   
 
Example:   Three charges (#1, #2 and #3 with 
charges +Q, +2Q, and -2Q respectively) are 
arranged as shown.  
What is the potential, V, at the origin? 
 
Answer:   
V=V(from #1)+V(from #2)+V(from #3) 
  = kQ/r       + k(-2Q)/r    +  k(+2Q)/r 
  = kQ/r. 
 
(The answer is positive: if you put a positive charge there, 
it would be happy to run away off to infinity if you'd let it) 
The math is reasonably simple! No vectors or components to worry about -  
finding E at the origin would be a lot more trouble.  
 
Example:    A test charge "+q" is moved from point "a" 
to "b" in the figure. (There are two other charges present, 
-Q and +Q, fixed in position at the corners of a square, as 
shown.)   
How much work does this take? 
 
Answer: Wext = ΔPE = PEb − PEa  .  
(Remember: at any point the potential energy is just PE= qV)   
PEb = +q ⋅V(at  b) = +q ⋅ k(−Q)

r
+
k(+2Q)

r
# 
$ 

% 
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=
kQq
r

(+1),

PEa = +q ⋅V(at  a) = +q ⋅ k(+2Q)
r

+
k(−Q)
r

# 
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% 
& =

kQq
r

(+1).
 

Subtracting, we find Wext = ΔPE = PEb − PEa = 0 .  It doesn't take any net 
external work at all. (Depending on how you move, you might do some 
+work part of the way, and -work part of the way, but in the end, you do 
zero total work going from this particular "a" to "b".) 
 
Trying to figure out the work by thinking of “force*distance” along the path 
would be HARD, because force changes all the time. Using voltages makes 
this much easier to figure out.   
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It's often useful to find all the points in a diagram that have the same 
voltage. E.g., consider a capacitor again.  
 

Everywhere along the top surface, 
the potential is the same (V=Ed). 
 
Everywhere along the bottom, the 
potential is the same (V=0).  
 
And every point on that dashed 
line has the same potential. 
(something between 0 and Ed) 
 
We call such a line an 

"equipotential" (equal potential) line. 
 
If you move a test charge along an equipotential line (e.g. the horizontal 
dashed line in the figure) the potential is the same everywhere, so no work is 
required. It's like walking along a flat surface where there's no change in the 
gravitational potential. Or, e.g. traversing sideways on a ski slope.   
 
There can't ever be a component of E parallel to an equipotential line. (if 
there was a nonzero E_parallel, you'd do work moving along it, since W = 
F_parallel*d = q E_parallel*d)  This means that in drawings, E field lines 
are always perpendicular to equipotential lines.  

The equipotential lines are shown as 
"dashed" in this figure.  
They're like contour lines on a topo 
map, which show "gravitational 
equipotential" lines. (Constant height 
on a topo means constant PE_grav).    
 
Anywhere along a dashed line, the 
potential is constant. 
 

•  Inside any (static) conductor, we know E=0. That means no work is 
required to move charges around anywhere inside, or along the surface. So 
metals are equipotentials throughout their volume! 
•   Real life is 3-D, those “lines” are really “surfaces”... 

 d

 V is high here

 V is low here

 V is in between, here

 E
 higher V

lower V

 middle V
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More examples of equipotential lines: 
Remember, voltage near a charge +Q is 
given by   V = kQ/r. 
 
The farther away you get, the lower the 
voltage. 
  
If "r" is fixed (i.e. a circle), V is constant.   
(Again, in 3-D, these would be 
equipotential surfaces, rather than lines. 

In this case, they’d be spheres surrounding the charge Q) 
 
Another example: here's a dipole, with a couple of equipotential lines 
shown. (Look back in Ch. 16, we sketched the electric field lines before. 
Now we’re adding in the “equipotential surfaces) 

 +Q  -Q
 Higher V

 Lower V

 Middle  V

 
 
We usually choose to define that center equipotential line as V=0. 
Remember, it's up to you to pick where V=0 is, and that line extends out to 
infinity. That's a pretty common choice.  (Far away from everything, the 
potential is considered zero.) 
 
To find the numerical value of the potential on one of those dashed surfaces, 
you’d do a quick calculation just like 2 pages ago - find the distance r1 to 
+Q, and r2 to -Q, and then V = kQ/r1 + k(-Q)/r2.  
Anywhere on the center line, you’re  equidistant from both charges, so 
r1=r2, and the two terms cancel,  V = 0.  It’s all consistent...  
 

 +Q

lower voltage
equipotential line

higher voltage
equipotential line
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ENERGY, and units: 
Example:  Release a proton (charge +e), from point a in the figure. 
Suppose the voltage difference between the plates is 5000 V  
(a typical voltage in e.g. a normal TV set.)  
How fast is the proton going at point b?  
 
Answer: I’d use conservation of energy here: 
PEi + KEi = PEf + KE f ,  i.e.    + eVa + 0 = + eVb + 1

2 mvb
2  

Solving for v_b we get  
vb = 2e(Va − Vb ) / m = 2(1.6 ⋅10−19 C)(5000J / C) / (1.67 ⋅10−27 kg) = 106 m / sCan 
you check that the units worked out o.k.?)  
Note that Va − Vb = +5000 J / C,  i.e. V_a is a HIGHER potential. However, the 
change in potential of the proton as it moves is ΔV = Vb − Va = −5000 J / C .  
Think about the signs: objects spontaneously move to LOWER potential 
energy if they can. That means “+” objects like to go to lower potential (i.e. 
lower voltage).   
 
What was the final KE of the proton in this example?  It's easy enough to 
find, using conservation of E: 
 
KE f = KEi + PEi − PEf = 0 + eV

a
− eV

b
= e ⋅ (5000V)

= 1.6 ⋅10−19 C ⋅ (5000J / C) = 8 ⋅10−16 J
 

 
Many people prefer to change units here, like converting 2.54E-2 m to 1 
inch (metric to non-metric)     We can define a new unit of energy: 
1 eV = 1.6E-19 J   
The "eV" is also called an "electron Volt", but it is NOT a volt (which is a 
unit of potential, or J/C, recall) It's just a name, “ee-vee”! 
 
The eV is defined so as to be the energy loss of a particle of charge "e" (like 
a proton) dropping across 1 Volt of potential.   
Since energy change is q*Delta V,  this is an energy change of  
(+e)*(1 V) = (1.6E-19 C)*(1 J/C) = 1.6E-19 J, just like we said.  
 
In the little problem at the top of the page  we could've done it without a 
calculator if we'd used eV's instead of J. Namely, 
 
KE f = KEi + PEi − PEf = 0 + eVa − eVb = e ⋅(5000V) = 5000 eV  
You can check that this agrees by doing a simple unit conversion: 
5000eV = 5000eV *1.6 ⋅10

−19 J
1eV

= 8 ⋅10−16J , which is what we got above. 

 d

 a  b
 +e
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CAPACITORS:   
Any time you have two metal surfaces near each other, separated by air (or 
an insulator), you have a capacitor. My favorite example is the "parallel 
plate capacitor". We've already looked at it quite often.   
 
A capacitor can be charged or not. When we say a 
capacitor has "charge Q", we mean +Q on one plate, and 
-Q on the other, like in the picture here.  (Of course, the 
net charge is really zero, but we still say it’s “charged”!)   
 
If we say "a capacitor has voltage V",  we really mean it 
has a difference in voltage between the plates ΔV = Ed . 
We drop the "Δ " for convenience, i.e. V=Ed. (It's a bad notation, but 
standard) 
  
The more charge Q you put on the plates, the stronger the E field between 
the plates, hence the bigger the voltage drop.  In fact, if you double Q, you 
discover that E doubles too (and so must V.)  
That means Q∝ V , or     Q=CV .  
C is a constant, and we call it the "capacitance".   
(Of course, you can also turn it around and say C= Q/V.) 
 
A capacitor can store charge (and energy) for you - that's why they're useful. 
Think of a closet with lots of bowling balls up on the shelf at high 
gravitational potential. You can let them fall down whenever you like, to do 
lots of work (or damage) later.  Your closet shelf has only a limited capacity 
to hold bowling balls. Similarly, metal plates of a given voltage difference 
have a certain limited capacity to hold charge, and that's what "C" tells you. 
 
A big capacitance (large C) means you hold lots of charge with a little 
voltage.  A small C means you can only hold a little bit of charge, for a 
given voltage (a bit like a small shelf in the closet).  Of course, given C, you 
can make Q as big as you want by making the potential bigger. (So our 
"closet" metaphor breaks down...) 
 
The units of capacitance are [Coulombs/Volt] = C/V . 
We call 1 C/V = 1 Farad = 1 F.  
(The units are getting confusing now, because 1 V = 1 J/C, so  
1 F=1 C^2/J too.) 
 
 • 1 F is a really big capacitor! It would hold 1 C (a lot of charge!) with only 
one volt difference between the plates. Most normal capacitors are more like 
micro or nano Farads.  

 d

 +Q

 -Q



17-11 (SJP, Phys 2020) 

© University of Colorado at Boulder 
 

For large parallel plates of area A, the E field between them is given by a 
simple formula (which I won't derive) 
 

E = 4π k Q
A

 
 
The formula says the more Q you have, the bigger E is. (That at least makes 
some sense, doesn't it?) Also, the bigger the area of the plates, the more the 
charge is spread out, and that should weaken the E field, so the A 
dependence in that formula also seems reasonable. The formula doesn't 
depend on "d" (how far apart the plates are.) This is perhaps a bit surprising, 
but it’s correct: E is UNIFORM, it doesn't change with distance from either 
plate. 
 
Earlier, we defined ε0 =

1
4πk

= 8.85 ⋅10−12 C2

Nm2 , so you can also say E = 1
ε0

Q
A

. 

 
We know V=Ed for a parallel plate capacitor. Combining this with the 
formula for E (just above) gives V = 4πk Qd

A
=

1
ε0

Qd
A

. 

Finally, C = Q/V (that defines C.) So that last equation for V yields 
(can you check the algebra yourself?)  
 
C =

1
4πk

A
d

= ε0
A
d  

 
(This formula is only for parallel plate capacitors) 
 
Since V=Ed, and E is uniform, the closer the plates, the smaller the voltage 
drop. Smaller V (for a fixed charge) means C=Q/V is BIGGER. If you can 
gets the plates closer together, you get a better (bigger C) capacitor!  So that 
"1/d" dependence in the formula makes some physical sense.  
 
Similarly, if the area of the plates is bigger, the formula says you have more 
"capacity" to hold charge. That makes good intuitive sense to me; you have 
more area to spread those charges out onto, so you can easily hold more 
charge.  
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If you connect a wire up to a 
capacitor (like on the left) the 
charges on the capacitor plates are 
free to travel. The + and - attract one 
another, the capacitor will discharge 
quickly, possibly with some nice 
sparks. There's energy in there! 
  
It takes work to charge up a 

capacitor!  
 
Consider e.g. a battery charging up a capacitor. 
A battery "wants" the plates to be at a certain 
voltage difference V. (E.g., a 12 V car battery 
always wants things connected to it to be 12 V 
apart.) To do this, it forces charges to go from 
one plate onto the other plate, fighting against 
an E field all the while.  
 
 
How much work does the battery do, charging 
the capacitor up from 0 to V?   
 
The first charge moves easily, it takes almost no 
work, because at first the plates have no charge. 
(There's no E field, and charges are pretty much 
free to move around wherever they want.) 
 
 
On the other hand, if the capacitor is fully 
charged (with a voltage V across it) you'd expect that moving Q charges 
across that voltage V would cost energy = Q*V.  The real answer is the 
average of 0 and QV  (on average, while charging ,  the voltage is V/2), so 
 
Energy to charge up = Energy stored in capacitor = U = QV/2 . 
 
The symbol "U" is, for some reason, often used for energy. 
In this case, it’s electrical potential energy.  
(Don’t confuse “potential energy” with “potential”!) 
 
Since Q=CV, we can rewrite this as U = CV^2/2,  or U=Q^2/(2C). 
Depending on what’s held constant, these forms are sometimes useful. 

 +Q

 -Q

 0

 0
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Example:  A 12 V car battery is hooked up to a capacitor with plates of area 
0.3 m^2, a distance 1 mm apart.  
How much charge builds up on the plates? 
 
Answer:  The battery will charge the capacitor up until the voltage is 12 V.  
Since Q=CV,  we only need to find C. But we know that 
C = ε0 A / d .  So we're all set: 

Q = CV = ε0
A
d
V = 8.85 ⋅10−12 C2

Nm2
0.3 m2

10−3 m
$ 

% 
& 

' 

( 
) 12V

= 32 ⋅10−9 C
2

Nm
V = 32 nC

 

(I used 1 V=1 J/C: check for yourself that that nasty combination of units 
simplifies like I claimed, to Coulombs) 
 
How much energy is stored in the capacitor now? 
U=Q*V/2 = 32E-9 C * 12V / 2 = 0.2 micro Joules.  Not so much.  
 
Aside:  Where exactly is the energy stored, in a capacitor?  
The answer is that it's stored in the E field!  Wherever you have electric 
fields, there is stored energy.  The energy is stored in the "space" between 
the plates, in the form of electric field energy. 
 

 
In diagrams, we will represent capacitors with a simple symbol 
like this, even if the capacitor in reality isn’t physically 
“parallel plate”.  (Sometimes the “C” is left off too)  

 C
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DIELECTRICS: 
 
Any insulating material (paper, plastic, etc) can be called a dielectric. Most 
real capacitors have dielectric materials between the plates.  
This helps to keep the plates apart! After all, the plates are 
oppositely charged, and so attract each other strongly. If 
they ever touched, the capacitor would discharge, or "short 
out", and be useless.  
So, with a dielectric in there, you can make "d" quite small, 
and remember that helps make the capacitance bigger.  
But the main reason for putting a dielectric in there is 
something different:  it actually decreases the E field in the capacitor! Why? 
 
Real materials (like dielectrics) are "polarized" by a strong E field.  
That means the E field in the capacitor effectively pulls some "-" charge 
towards the top of the dielectric (nearer the "+" plate), and 
some "+" towards the bottom (nearer the "-" plate)  In the 
region throughout the middle, it looks like some of the "Q" 
around you has been weakened, or shielded, or canceled 
out.   
The net effect is that E is reduced throughout the dielectric. 
And since V=Ed, the voltage between the plates is reduced.  
 
Since C=Q/V, if Q is fixed and V is reduced, C gets bigger. 
In this way, dielectrics make the capacitance bigger. 
 
(Your capacitor can hold MORE charge for a given voltage, with a dielectric 
in there, because the surface of the dielectric effectively shields out some of 
the E field from the middle region)  
 
Recall the formula C =

1
4πk

A
d
= ε0

A
d

.   
That's if there's no dielectric. If there IS a dielectric, we just argued C is 
bigger.  It turns out for most dielectric materials, C is bigger by some 
constant factor which depends only on the material,  i.e. 
 
Cwith dielectric = K 1

4πk
A
d

= K ε0
A
d

 
 
K will be some constant for any given dielectric material (Giancoli has a 
table) Bigger K means you get a bigger C.  
(Paper, e.g. has K=3, roughly.) 

 +Q

 -Q

 Dielectric

 +Q

 -Q
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Capacitors are everywhere: in circuits, radios, computers, TV's...  
It's handy to have a "charge storage" device!  
The final (brief) topic of this chapter is a real world application of 
capacitors: CRT's, or "cathode ray tubes". 
 

A "cathode ray" is an old-fashioned name for electrons. The "cathode" is a 
heated piece of metal, set at a very low voltage. The "anode" is set at a high 
potential (so the "cathode" and "anode" basically form a capacitor) Electrons 
boil off the hot cathode, and then they are accelerated towards the high 
voltage ("+" charged) anode. The anode is a grid with lots of holes, so many 
electrons can fly right on by and cruise towards the screen.  
 
They pass through a pair of capacitors (vertically and horizontally oriented) 
which have a voltage that "sweeps". As electrons pass through these 
capacitors, they feel the force from the E field, which bends the path of the 
electron. Since the voltage is swept, the electrons are also swept. They fly on 
by, and hit the screen, which glows where the electrons hit. So you see them 
sweeping by, and this makes the whole screen glow. By turning the anode 
on and off, you can make the electrons go through or not, thus making bright 
or dark spots, which allows you to make an image. 
 
This device is used in old computer monitors and TV, oscilloscopes, EKG 
traces, you still see them all over. We’ll play with an oscilloscope in lab, 
where you can control the voltages by hand and mess around with 
manipulating electron beams... 

hot metal "-" cathode

 "+" anode (with holes)

vertical capacitor

horizontal capacitor

screen


