
Phys2020: Exam 3 Practice for April 14, '16. 7:30-9:15 PM

Your I	Name (please pri	nt neatly!)						
Stude	nt ID #							
TA's r	name (Circle one	!! !)						
	pert Ariniello Nicholas Kellaris Omas Gray Andrew Spott				Prasanth Prahladan Shane Rightley			
	our lab meets (C your lab starts (C	•	Tue 8	Wed	Thu 12	2	4	
	Write in <i>and</i> bub Write and bubble	above, and <i>ci</i> bble in your in the exam ve	rcle yname o	our TA and you A) in th	+ the ur ID # e space	day a on the	n! and time of your la the bubble sheet! left of the bubble s anounces you may b	heet.)
Pleas NOT I If you At the	be used for gradican't thoroughly end, <i>check</i> that	ur answer on ng purposes!! erase, ask for you have bub nted the same	the bu Use a r a fres bled ir	ibble sh a #2 per sh bubb n <i>one</i> ar	neet. Ar ncil. Era nle shee nswer c	ase m et. only, f	s circled on this exa listakes carefully. for all questions. "stuck" on one prob	
	"On my hono	r, as a Univer given nor	ersity recei this	of Co ived ui work"	lorado nautho	at E	it's confusing - than Boulder student, d assistance on	ks!
This e	xam is double sid	ed, please look	x at the	e backs	of page	s!		

Useful constants:

$$k = 9x10^9 \text{ N m}^2/\text{C}^2$$
, $\mu_0 = 4 \pi x10^{-7} \text{ T m/A}$
 $e = 1.6x10^{-19} \text{ C}$, $c = 3x10^8 \text{ m/s}$

On this exam, neglect gravitational forces unless we explicitly say otherwise.

Some Units:

Units of [force] = $[N] = [kg*m/s^2]$,

Units of [energy or work] = [J] = [N*m] = [kg*m²/s²], [Power] = [J/s], Intensity = [J/(s*m²)] Units are Current = C/s, Units of resistance is Ω =Ohm=[J s/C²] Unit of resistivity is [Ω *m] Units of Magnetic field = [T] = [N/(C*m/s)] = [kg/(C*s)]

Useful Formulas:

Newton's 2nd Law: $\vec{F}_{net} = m\vec{a}$, Work = $\vec{F} \cdot \vec{d}$ = |F||d| cos θ , Power = $\vec{F} \cdot \vec{v}$ = |F||v|cos θ

Coulomb's Law: $|F_{elec}| = \frac{k|q_1||q_2|}{r^2}$

Electric Fields:

 $\vec{E} = \vec{F}/q$. Special cases of the above: $\left| E_{near\ a\ point\ charge} \right| = \frac{k|q|}{r^2}$

Electric Potential (or "Voltage")

 $\Delta V = \frac{\Delta PE}{a}$. Special cases of the above: $V_{near\ a\ point\ charge\ q} = \frac{kq}{r}$

For uniform fields (or short distances), $|\vec{E}| = \left| \frac{\Delta V}{\Delta d} \right|$

Capacitors:

 $Q = C\Delta V$, $C_{parallel\ plate} = \frac{A}{4\pi k d}$, $|E|_{parallel\ plate} = \frac{4\pi k Q}{A}$,

Stored energy in capacitor: $U = \frac{1}{2}C(\Delta V)^2 = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}Q\Delta V$

Currents and circuits

Current is charge passing per second. Resistance is $R = \rho L/A$, where ρ = resistivity $\Delta V = IR$ across a resistor, and power dissipated is $P = I\Delta V = I^2R = \Delta V^2/R$

Resistors in series add up, resistors in parallel obey $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$

Magnetic fields

Force on a wire in a B-field: $F = I * length * B * sin \theta$, direction given by a "right hand rule" Force on a moving charge in a magnetic field is $F = q v B \sin \theta$ (again, "right hand rule") Special case: $|B_{near\ wire}| = \frac{\mu_0}{2\pi} \frac{I}{r}$. In uniform B-field, charges move in circles, with $R = \frac{mv}{aB}$.

Faraday's law

 $EMF = -N \frac{\Delta \Phi_{mag}}{\Delta t}$, where $\Phi_{mag} = BAcos\theta$, and N is the number of turns (or coils) (Lenz' law is the minus sign in the above equation!)

Electromagnetic Waves (radiation)

For any wave with speed v, $\lambda f = v$, and speed of light in vacuum = c = 3E8 m/s, Frequency f = 1/period, [f] = [Hz = cycles/sec]