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Electrical Circuits: 
 

Many real world electronic devices are just collections of wires, 
resistors, capacitors, and batteries, forming circuits that do 
something (flashlights, toasters, blowdryers, radios, amplifiers,...) 
It's important to understand (and predict) the currents and voltages 
in such circuits.   E.g., consider first a simple “flashlight circuit”: 

 
The “R” here might represent the 
resistance of the flashlight bulb. 
 
Here, V=I*R1,  or I = V*(1/R1)  
 
 
 

 
Now consider a slightly more complicated 
circuit: 
 

These resistors are in series. 
 

There will be a voltage drop  V1= I*R1 
across the first resistor, and V2 = I*R2 
across the second.  
The TOTAL voltage drop from top to 
bottom is V = V1+V2 = I*(R1+R2) 
 

The resistances simply add up!  
In other words, this circuit is essentially 
equivalent to the following simpler circuit: 
 
Similarly, for many resistors in series:    Requiv = R1 + R2 + R3 +…  

 
 
  =  
 
 

Important: the current I is the SAME through each of these series 
resistors. (What goes in must come out: conservation of charge!  
This is not an approximation of any kind, it’s exactly true)  
 
However, that doesn’t mean the current I in circuit 1 is the same as 
the current in circuit 2. Those are different circuits.... 

 I
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Here’s a different circuit. We say R1 and R2 are “in parallel”: 
 

This time, the current I is NOT 
necessarily the same through R1 and 
R2.  
 

The current divides up: I1 goes left, I2 
goes right.  
 
(Conservation of charge, however, 
does tell us that I = I1 + I2, can you see 
why that is? Charges can't be created 

or destroyed here - they must go SOMEWHERE, and current just 
"counts the charges that flow by/sec") 
 

It also says I at the bottom (going into the battery) is exactly the 
same as I at the top (leaving the battery) 
 
Note:  the voltage across R1 is exactly the same as the voltage 
across R2!  This is an important point, stare at the picture and try to 
understand why. Think of this as two different ski runs. Both have 
the same top and bottom (the same height, the same voltage), but 
they have different resistances, so different number of skiers/hour. 
(Different currents through each resistor) 
 
 

Or, you might think of water 
flowing through pipes: 
Here, the difference in pressure 
(like voltage difference) is 
exactly the same for both pipes 
(pressure at the top of either is 
identical, pressure at the bottom 
of either is identical, so the 
difference across either is 
identical) but the current through 
each will be different. 
   
The total current is just the sum 
of the two currents, I = I1+I2 
 

 fixed, low
pressure

 fixed, high
pressure

 constricted
  pipe 1 pump

 pipe
   2

 I2 I1

total flow, I
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The previous parallel circuit (#3) is essentially 
equivalent to the following simpler circuit: 
 
 

In this situation (resistors “in parallel”) I claim  

   
  

1
Requivalent

=
1
R1
+
1
R2

+
1
R3

+… 

 

We can prove it mathematically  
(if you’re interested):   
It comes from the fact that I = V / Requiv , 
but conservation of charge says  

  

I = I1 + I2 + I3 + … =
V
R1

+
V
R2

+
V
R3

+…

= V * 1
R1

+
1
R2

+
1
R3

+…
! 

" # 
$ 

% & 
= V / Requiv

 

 

Examples of equivalent 
resistances: 
 

1
Requivalent

=
1

100Ω
+

1
100Ω

= .02 Ω−1 ,

i.e. Requivalent = 1 / (.02 Ω
−1 ) = 50Ω

 

 
1

Requivalent
=
1
2Ω

+
1
1Ω

=1.5 Ω−1 ,

i.e. Requivalent = 1 / (1.5 Ω
−1 ) = 0.67Ω

 

 
 

1
Requivalent

=
1
2Ω

+
1
0Ω

= (0.5 + ∞) Ω−1 =∞ Ω−1,

i.e. Requivalent = 1 / (∞ Ω−1 ) = 0. Ω(The last is a short circuit, 0 resistance. All the current is happy to 
flow through the 0 Ω side!)  
Note that R_Equiv always comes out less than any of the individual 
parallel R's. That means, if there are two (or more) ways for the 
current to go, there is LESS overall resistance to flow.  

(More ways for current to flow makes it easier for the current to 
flow.  More ski runs at a resort means you can get more people 
skiing: more current, less overall resistance.)

100 Ω

100 Ω

  =
 50 Ω

 2 Ω

 1 Ω

  =
 0.67 Ω

 2 Ω

 0 Ω   =>  (short circuit!)

  =
 0 Ω

 R1  R3

R2

 I

 Requiv V
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You can have both parallel and series together. To find the “single 
equivalent resistor”, just "break it apart" bit by bit: 

Drawing circuits requires some abstraction. The real situation may 
look different, but be equivalent. The fact that wires can have funny 
shapes makes things especially confusing. So, e.g. the following 
two circuits are exactly the same: 

 

Straight lines (even 
with bends) always 
represent ideal wires. 
So you need to think 
hard in lots of these 
pictures! 

 

 E.g. here's another pair of 
circuits which are exactly the 
same. (I labeled some points, to 
help guide your eye). Study this 
and convince yourself that it's 
two different representations of 
the SAME CIRCUIT. 
 

If I asked for the "equivalent resistance" between a and b in the 
above two, the one on the left looks 
scary. But the one on the right makes it 
apparent that it's not so bad, just 
combine R3 and R4 (which are in 
series) to get this picture: 
 
Now you could combine "R3+R4" 
with "R2",  which are manifestly in parallel (dotted circle), and add 
R1 to get the equivalent resistance.  (It's not as hard as the 1st 
picture implied!) 
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Here's yet another example of identical circuits. ALL the pictures 
represent exactly the same situation!  Again, study them all, and 
convince yourself that there's no difference! 

All those circuits are just 3 resistors in parallel.  I personally prefer 
the first drawing, because it makes it visually obvious that the 
voltage V across all 3 resistors is exactly the same. (Like 3 parallel 
runs down the ski hill) By the way, this setup is pretty much how 
houses are wired up for appliances: here's one MORE drawing, 
which is pretty much equivalent to all the ones above: 

 

(V=120 V AC, the fuse shuts off current to all 3 appliances if I 
exceeds about 15-20 A) 

 R2  R3   = R1
 V

 V

 R1

 R2

 R3

 V

 R3

 R2
 R1   =  V R1  R2
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Another example. Here's a more complicated circuit, let's find the 
currents I1, I2, and I3. And, let's find Vab, the voltage difference 
between points a and b. 

Look at R2 and R3. 
They're in parallel.  
 
So we can combine them 
into an effective single 
resistor.  

The circuit is equivalent to this one 
 
I know what R/ /  is because     
1
R/ /

=
1
R2

+
1
R3

=
1
20Ω

+
1
20Ω

= 0.1Ω−1,

i.e. R/ / = 10Ω.
 

But now you can see we have two resistors in series. Thus, this 
circuit in turn is effectively equivalent to the next one: 

 

Life is easy at this point! 
 
Use V = I1 Requiv , 
giving  
I1 =(10 V)/(40 Ohm) = 0.25 A. 

 
This tells us I1 (the same in any of the diagrams!)  
To find Vab, go back a step to the "equivalent circuit" just above.  
 

In that picture, you can see that 
Vab = I1*R/ /  = 0.25 A * 10 Ohm = 2.5 V. 
To find I2 and I3, you go back yet another step, to the very top-
most picture. (Note! Vab is the same across resistors 2 and 3) 
 
Vab = I2R2 ⇒ I2 =Vab / R2 =2.5V / 20Ω = 0.125A
Vab = I3R3 ⇒ I3 = Vab / R3 =2.5V / 20Ω = 0.125A

 

(Also notice: I2+I3 = .125+.125 = .25A = I1, which makes sense!)  

 R2 = 20 Ω  R3 = 20 Ω

 R1=30 Ω

  10V

 I1

 a

 b

 R // = 10 Ω

 R1=30 Ω

  10V

 I1
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 b

 R Equiv
      =30+10 Ω
           = 40 Ω  10V

 I1

 b
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There are devices to measure V, I, and R in circuits.  
 

An ammeter: a device that measures the current 
running through itself. 
 
(An ideal ammeter has zero internal resistance, so 
it won't hinder the current it is trying to measure...) 

 

A voltmeter: a device that measures the voltage 
difference across its terminals: 
 
Vab = Va - Vb.  
(An ideal voltmeter has infinite internal resistance, 
so it won't alter the voltage it is trying to measure. 
It won't suck any current into itself...) 

 
Examples of simple circuits with volt- and ammeters in place: 
 

To measure the current "I" 
flowing through the resister R in 
this circuit, we must place the 
ammeter in series, as shown. 
 
 
If you put the ammeter in 
parallel, like this, it's very bad. 
You'll blow a fuse, burn out 
your battery, make sparks... 
Why?  
 

Remember, the ammeter has zero resistance - you have short-
circuited the battery.  
(The current is happy to flow through the ammeter, with R=0, so 
V=I'R, but if R=0, and V is finite, I' will be VERY big!) 

 A
 I

 a

 b
 V

 R
 V

 I
 A

 Good

 R
 V

 Bad!!

 A
 I’
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To measure the voltage "V" across the 
resistor, you must place the voltmeter 
in parallel, as shown. The voltmeter 
will read off "V" for you 
 
 
This circuit is badly designed.  
Remember, voltmeters have very 
LARGE internal resistance. In this 
circuit, no current can flow! (V=IRtot, 
Rtot is huge, so I = 0). 

There will be no current, (so no voltage "drop" across the external 
resistor) and the voltage drop across the meter will be the battery 
voltage. Nothing will "burn out" like in the previous bad example, 
but you won't get the reading you were really interested in.  
 
Note:  real batteries always have some small, unavoidable internal 
resistance "r" in them.  We can usually neglect it, but in real life, if 
e.g. you short circuit a battery, the current is large but never infinite 
due to the small but finite "r".   
 
A real battery can be "modeled" in the following way: 

 
Giancoli writes an 
ideal voltage source as 
“EMF” (with a curly 
E) instead of V.  
 

 
If you ever need to think about circuits with real batteries instead of 
ideal ones, just add in a small “internal resistance” r next to the 
battery. As batteries get old, the internal resistance gets larger (and 
so they put out less current) 
 
Have you ever noticed that if you start your car with the lights on, 
the lights dim? That’s because of the internal resistance of the car 
battery- as current flows, there is some voltage drop across “r”, 
which means less voltage for the light bulbs...

 R
 V

 Good

 V

 I

 R
 V

 V
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 V (real)

 (“Real” battery)
 V

 =

 (“ideal” battery)
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Finding R_equiv piece by piece, like we've done, usually works 
fine. But sometimes, circuits get a little too complicated. E.g. 

 
 
 
 
 
 
 
 
 

You can still find the currents and voltages throughout, using ideas 
we call "Kirchoff's rules". (There's nothing especially new here, 
we've already intuitively seen and used the rules!) 
Kirchoff's first rule is a statement of the consequence of 
conservation of charge: "whatever current goes in, must come out". 

 

At this junction "a" (which might be part of a 
bigger circuit),  
        I1                =         I2 + I3 
Current Entering = Current Exiting 
 

Just be careful to watch the arrows. You will be drawing arrows for 
currents, and they might point either way. E.g. in this picture: 

 

       I1   + I3            =         I2 
Current Entering = Current Exiting 
 

(Note the direction of I3's arrow) 
 

Example:  
Look at the junction labeled "a".  Here, 
I  = I1 + I2 + I3 
(I enters, the other three exit)   
 
(Look back at  p. 19-5, the discussion 
about household wiring. We had this 
same diagram.  
I is the total current drawn by your 
house. I1, I2, and I3 are currents in the 
individual appliances.) 

 I1
 a

 I2

 I3

  or
 V  V

 (2 batteries!)

 I1
 a

 I2

 I3
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Kirchoff's second rule says "The sum of voltage changes around 
any closed loop is always zero".  (This is just conservation of 
energy.) Think of our ski-lift analogy, where voltage <-> height.  
As you move around the ski area, you go up and down, but if you 
make a loop (ending up right where you started), the total sum of all 
rises plus all drops will add to zero!  
 
Example: Consider the following circuit (by now familiar!) 

Look at the loop labeled #1.  You can start wherever you want, let's 
begin at the bottom and imagine "walking around" the loop in the 
direction shown.  We first go UP the battery (voltage change +V), 
and then we go DOWN the resistor R1, with voltage change  
-I1*R1. It’s a drop - think hard about every minus sign here:  
 

+V − I1R1 = 0      (Or V = I1R1 , which if you think about it makes 
sense!  Resistor R1 has a voltage V across it, after all)  
 
Alternatively, you could go around the loop labeled #4. (That's 
going around the whole circuit, basically).  Now you go up the 
battery, across the top (no voltage drop there), and then down 
resistor R3.  So Kirchoff's second rule says 
+V − I3R3 = 0                        (Or V = I3R3 , again makes sense) 
 
Another alternative: Loop #2.  Thinking of this in the "skier 
analogy", loop #2 is for backcountry skiers. You ski UP R1, and 
then back down R2. Kirchoff's second rule would say 
 
+I1R1 − I2R2 = 0                   (Or I1R1 = I2R2 , both also =V, again 
makes sense) 
 
Notice the signs. The I1R1  term is +, you're going UP the hill there 
(going against the current), so your voltage is increasing....  

 R2  R3 R1 V
 I1  I2  I3

 Loop
   #1

 Loop
   #2

 Loop
   #3

 Loop #4
(around the outside)
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Kirchoff's rules are fairly intuitive, except the signs can be tricky! 
Unfortunately it's critical that you get them right. Currents always 
have arrows (directions) associated with them, and so do the loops. 

 

If you are going around a loop and encounter a resister 
with a current like this, then IF you are heading RIGHT 
-->, you're travelling WITH the current, the voltage 
DROPS across R, so the change is -IR.   

On the other hand, if you happen to be going around the loop the 
other way, <--,  (so you're "fighting the current"), you're going UP 
the hill, change in voltage is +IR. 
 

Batteries can also be confusing: 
 

If you are going around a loop and encounter a 
battery like in this picture, then IF you are heading 
RIGHT -->, you're travelling from the low V side 
to the high V side of the battery, the change is +V.    

On the other hand, if you are going around the loop the other way, 
(<--), then you're going DOWN the hill (down the battery) and the 
change in voltage is -V.  (Think of the ski lift analogy) 
 
Example:  Let's figure out the currents in each of the resistors here. 

 
 

The first step is to draw 
arrows for currents, and 
label them. 
 
 

The direction you initially pick for the arrow is arbitrary!   
It doesn't matter. If you solve for, say, I1 in the picture above, and if 
it happens to come out negative, that just means the real current is 
heading the OPPOSITE way from the arrow you drew. (So, it'd be 
left, in the picture above.)  
 

 R

 I

 low side

 V

 high side

 V1=
 10 V

 V2=
  25 V

 R1= 5 Ω

 R2
 = 50 Ω

 I1

 I3

 I2

 I4
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Before proceeding, try to avoid making up too many different 
symbols/labels for currents. E.g., in this example, look over on the 
left. I4 is entering the battery (labeled V1) and I1 is leaving. But 
Kirchoff's rule #1 says "what goes in, must come out". That's true 
everywhere, including batteries. So I4=I1.  Why make up a 
different label? Just replace I4 with I1!  There are then only 3 
unknowns, rather than 4...  
 
Here's the circuit again, with currents (and a few points) labeled. 
 

What we're after is I1, I2, and I3. 
 

Look at junction "a", we have 
   I1  + I3     =    I2          (Eq'n 1) 
(current in  =  current out: watch the 
arrows!) 

That's ONE equation, for three unknowns!  We need two more. 
 

It turns out, in this case, that no more "current junctions" (i.e. 
Kirchoff's first rule) will help. We could TRY, look e.g. at point b. 

 

At point b,  Kirchoff's first rule says  
     I2           =     I1 + I3.   
(Current in  = Current out) 
But that's the same equation we had before! 

 
So we use Kirchoff's second rule for our other two equations. 

Here's the circuit one more time, 
with some loops labeled: 
Let's follow Loop #1.  
 

We can start wherever we want, 
e.g. at point b, and go around. 
Watch all the signs! 

 
+V1 − I1R1 − I2R2 = 0        (Eq'n 2)  
 

We climbed UP the battery V1, it's +.  We went DOWN both of the 
resisters R1 and R2 (i.e. we went WITH the current), so they're both 
voltage drops, or negative.   Putting in numbers, we have 
+10V − I1 (5Ω) − I2 (50Ω) = 0          (Eq'n 2 with numbers) 
 

 b

 I2

 I1  I3

 V1

 V2

 R1

 R2 I1

 I3

 I2

 b

 a

 V1

 V2

 R1

 R2 I1

 I3

 I2  b

 a

 Loop
   #1

 Loop
   #2
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We need one more equation. Just pick another loop (any one will 
do). E.g., let's go around loop #2, starting this time at point a.   
−V2 + I2R2 = 0          (Eq'n 3) 
 
As always, the minus signs are important to understand. Look at the 
picture again: this time, when we pass battery V2, we are going 
DOWN the battery (from the "high" side to the "low" side indicated 
by the long and short horizontal lines on the battery symbol, 
respectively.) That's a voltage DROP. It's like we took the ski lift 
labeled V2 DOWN the mountain! That's why V2 got a minus sign 
above. 
 

Similarly, now we're climbing up the resistor R2. (We're fighting 
the current I2) That means we're going uphill: the voltage change is 
plus, so that's why we have +I2*R2.   
 

Putting in numbers, 
−25V + I2 (50Ω) = 0 ,  or (solving for I2),   
I2 = 25V/50 Ohm = 0.5 A 
 

We can plug this value for I2 back into Eq'n (2), giving 
 

10V - I1*5 Ohm - (0.5 A)*50 Ohm =0, or (solving for I1) 
I1 = [10 V - 0.5A*(50 Ohm)]  / (5 Ohm) = -3 A. 
 

Finally, Equation 1 said I1 + I3 = I2,  or (-3A) + I3 = 0.5 A,  
so I3 = 3.5A. 
 
I1 came out negative. So we guessed wrong: current I1 is really 
heading left. It's going INTO the left-hand battery. That's a little 
unusual, the big 25V battery on the right is pumping current INTO 
the 10 V battery on the left, it's being "charged". Only specially 
designed batteries can be effectively recharged, for most normal 
ones this won't work. (You might damage the battery on the left.) 
 
What does "charging" mean? Well... batteries can only put out so 
much total charge = current*time, and then the chemicals inside 
die.  So for the short term, recharging is irrelevant, (the circuit 
diagram tells you what happens, regardless of whether the battery is 
rechargeable or not) but after a long time, the voltage (and current) 
of a normal battery will become zero, unless you can recharge it!  



19-14 (SJP, Phys 2020) 

© University of Colorado at Boulder 
 

RC Circuits:(We will not cover the rest of these Ch. 19 notes in our 
2020 course. You might find it interesting, but it’s not required!) 
 

Putting capacitors into circuits is a bit of a funny business. E.g., 
 

The battery on the left will charge up the capacitor on 
the right. Charges move onto the top plate, and off the 
bottom plate, until finally Q=CV has built up on both 
plates.  Then, no more charges will move. 

 

So there's briefly a current (as charge flows from 
the battery to the capacitor), but then the current 
stops.  
 
 
 

Now consider a circuit with no battery at all, just a capacitor and a 
resistor. Let's begin with the capacitor all charged up  

(like we just described), and the switch open, 
as shown here.  
 

Let's suppose we start with charge Q0, and 
voltage V0, across the capacitor.   
(V0 = Q0/C, of course) 

 

At time t=0, we close the switch. What happens?  The capacitor is 
now able to discharge! At first, a large current, I, will flow. (There's 
a voltage across the resistor at this point, and 
V=IR)  This situation is similar to a simple 
"battery and bulb" circuit (like way back on 
P. 19-1), but capacitors aren't batteries.  
 

The capacitor runs down, quickly! Current 
doesn't CONTINUE to flow, like it does with a battery.  
 
So the current STARTS off strong (I0 = V0/R), but it will decay 
away with time.  
 

 V  C

- - - - V  C ++++
 +Q I (briefly)

- - - -
 R ++++

 Q0
 C

- - -
 R +++

 I

 C
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At any instant in time, we 
have the following 
relations: 
 
V = IR   
V = Q/C 
 
The voltage "V" is the SAME voltage across the capacitor and the 
resistor. (Look at the picture, V=Va-Vb in the picture,  it’s the 
difference in potential between top and bottom) 
 

What is I? It's the charges flowing/second. Where do the charges 
come from? They were stored on the capacitor plate!   
So I = − ΔQ / Δt .   
(If charges leave the capacitor, they must flow through the resistor.  
The minus sign says that Q is decreasing when current flows in the 
direction shown) 
 

Putting this together with the equations above gives 
 
ΔQ
Δt

= − I = − V
R
=
−Q
CR

 
 
In words, the RATE at which charges leave is proportional to the 
AMOUNT of charge still sitting on the plate. (Q on the right side is 
of course changing all the time, this equation holds at some instant) 
Look at the units: 
[RC]=[Ohm*Farad]=[V/I][Coul/V]=[Coul/I]=[Coul/(Coul/sec)]=sec 
 

(This makes sense, ΔQ / Δt  SHOULD be charge/time) 
 
We define the quantity τ ≡ RC .    (That's the Greek latter "tau") 
 

Whenever you have something decaying, and the rate is proportional 
to how much you have left, you get "exponential decay". The 
mathematical formula for Q as a function of time is 
 

 Q(t) = Q0 e
− t /( RC) = Q0 e

−t /τ        There are MANY examples of 
"exponential decay" in nature. Some examples: cooling objects 
(where the temperature decays with time), or radiation (where the 
number of particles decays with time), or drug concentrations 
(where the amount decays with time)... 

- - -
 R +++

 I

 C

 a

 b

 (Q)  V=voltage difference
     = Va-Vb
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In the exponential decay formula, "e" is a number, e=2.718... It's a 
little like Pi. It's also called the "base of natural logarithms".   
e^something really means 2.718^something.   
(You do NOT use the "E" or "EE" key on your calculator!  Look for 
the e^x button)  
 
Since V=Q/C, we have (dividing that last equation through by C) 
 
V(t) = V0 e

− t/(RC) = V0 e
−t /τ .   

 
At time t=0, you have e^(0) = 1, in other words V(0) = V0.  (Duh) 
 
If you wait till a later time, the formula tells you what the voltage is 
(or, the earlier formula tells you the remaining charge on the plates) 
 
Example:  When t=tau, (i.e. if you wait a time t=RC seconds, which 
is also called waiting "one time constant"), then you have 
V(τ ) = V0 e

−1 =
1
e
V0 =

1
2.718

V0 ≈ .37V0 . 
The voltage has dropped to almost a third of where it started. 
 
If you wait TWO time constants, i.e. t=2RC = 2*tau, then 
V(2τ ) = V0e

−2 =
1
e2
V0 ≈ .14V0  

Here's a sketch of Voltage as a function of time: 
 
 
 
 
 
 
 
 

Whenever you wait "tau" more seconds, the voltage (or similarly, 
the charge) has decreased to 1/e = 37% less than what you just had.  

 .14V0
 .37V0

 Voltage (AC)

 time

 +V0

 3τ  τ   2τ
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Example:  Consider the following "RC" circuit: 
 
Here, "tau"=RC=(10*10^-9 F)*(2000 Ohm) 
                 = 2*E-5 sec.  
 
The time constant of this circuit is  
2E-5 sec. (pretty short)  

Suppose you begin with Q0=50 microC of charge.  
(So V0 = Q0/C = 50.E-6C / 10.E-9 F = 5000 V = 5kV) 
The charge will begin to leak off (through R). 
 
After 2E-5 sec (one time constant), you will have 
Q(τ ) = Q0 e

−1 =
1
e
Q0 ≈ .37Q0 ≈ 18.5µC  left on the plates. 

After 4E-5 sec (two time constants), you will have 
Q0/e^2 = 6.8 micro Coulombs left. 
 
You can plug ANY time into this formula. E.g., after one second, 
you have Q(1sec) = Q0 e

− (1sec)/ RC =Q0 e
−1/ (2E −5) = 50µCe−5E 4 ≈ 0 

It's long gone!   
 
TV and computer monitors usually have BIG capacitors in them to 
store up charges. They also have big resistors across those 
capacitors, and often have very high voltage power supplies 
(converting the 120V at the wall to much higher voltages, many kV, 
inside).  So Q0 = CV0 is large (lots of charge stored!) and tau = RC 
is also large (the time constant is big, it takes a relatively long time 
for that charge to leak back off the capacitors). If you open up a 
monitor and start poking around in there, you're liable to get into big 
trouble. 

 
You provide a LOWER resistance 
path for the charges to flow through 
- the current goes through YOU 
(with a smaller time constant, i.e. 
quicker!) 

 
The inside of TV's and computer monitors can be pretty dangerous, 
even when they’re unplugged, because the capacitors in them can 
hold a lot of charge for a long time (even after being disconnected to 
the external voltage source.)  

- - -  R =2 kΩ +++
 C = 10 nF

- - -
 R +++

 C
 R(you)


