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Faraday's Law:  
 

A steady E field pushes charges around, makes currents flow.  We've used 
the word "EMF" for this occasionally, an EMF is any voltage difference 
capable of generating electric currents.   
Think of EMF = ΔV  (=E Δx, remember that relation between V and E?)  
(Note:  batteries have an EMF, but resistors do NOT.  Even though an R can 
have a voltage difference across it, it is not generating it! Resistors don't 
make currents spontaneously flow, batteries can.)  
 
Michael Faraday, a British physicist (at the same time as Joseph Henry, an 
American, but Faraday published first) about 180 years ago discovered a 
remarkable new property of nature: 
 

Changing magnetic fields (not steady ones) can make EMF's. 
In other words, a time-varying B field can make currents flow. 
 
Imagine a wire loop sitting in a B field, like this: 
 
If the B field is steady then there is NO 
CURRENT, the bulb is dark.   
 

But, if the B field changes with time, the bulb 
lights up, a current flows through that wire (!)   
 

You might do this by e.g. just moving a big 
magnet closer, or farther away (yes, weakening the B field is still a 
change)...  or move the coil itself closer (or farther) from the magnet face.  
 
There's no battery here, no external voltage source, but the bulb still glows! 
This effect is surprising, it's something new... 
 
Faraday spent only 10 days of (intensive) work on these experiments, but 
they changed the world radically.  
This is how most of modern society's electricity is now generated!  
 
Faraday worked out an equation (Faraday's Law) which quantifies the effect 
(how much current do you get?)  
But before we can write it down, we need to first define one relevant 
quantity we haven't seen yet. 
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Imagine a B field whose field lines "cut through" or "pierce" a loop.   
Define θ as the angle between B and the "normal" 
or "perpendicular" direction to the loop.   
We will now define a new quantity, the magnetic 
flux through the loop, as 
 

Magnetic Flux, or  Φ = B⊥ A = B A cosθ  
 

B⊥ is the component of B perpendicular to the loop: 
B⊥  = B cosθ.   
The UNIT of magnetic flux = [Φ] = T m^2 = Weber = Wb. 

 
Flux is a useful concept, used for other quantities besides B, too.  E.g. if you have solar 
panels, you want the flux of sunlight through the panel to be large. House #2 has poorly 

designed panels.  Although the AREA of the 
panels is the exact same, and the sunshine 
brightness is the exact same, panel 2 is less 
useful:  fewer light rays "pierce" the panel, 
there is less FLUX through that panel. 
 
Examples of calculating magnetic flux: 

 
Here (picture to the left) Φ = B A,  

area.  (θ=0) because B is perpendicular to the 
 
 

Here (picture to the right), Φ =0, because B is 
parallel to the area.  (θ=90. )    
No flux: the B field lines don't "pierce" this 
loop at ALL, they "skim" past it... (That's zero 
flux!)  

 
Here, (picture to the left), Φ = B A cosθ.  The flux is 
reduced a bit because it's not perfectly perpendicular. 
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Faraday’s Law:   The induced EMF in any loop is 
 

 EMF =  - ΔΦ/ Δt .       (Φ is magnetic flux, t is time.) 
• If you put a loop into a B field, and then change the flux through that loop 
over time, there will be an EMF (basically, a voltage difference) induced. 
Current flows, if you have a conducting loop.  
 

• The formula says it is only the change in flux through the loop that 
matters. A huge B field (lots of flux) does NOT make the EMF, it’s the 
change in B with time that does the trick. 
• This equation has not been derived - it’s just an experimental fact! 
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It’s a mess, but it works out. The formula gives the correct units.) 
 

• If you were to “pile up” N loops on top of each other, 
the effective flux will be increased by a factor of N, the 
formula becomes EMF=-NΔΦ/Δt. (Do you see why?)  
 

•  Since Φ = B A cosθ, you can change the flux in 
many ways: you could change B,  or area, or the angle 
between B and the loop. 
 

Example: B is perp. to this loop, θ=0, as shown. 
(Remember, θ is the angle from the normal)  
The area is A= (0.1m)^2 = .01 m^2 
Suppose B is 1 Tesla, as shown, and then you turn it 
off, taking a time of 2 seconds to do so... 
 

Faraday’s law says there will be an “induced EMF”, or voltage, around the 
loop, 
|EMF|=|ΔΦ/Δt| = [ (1 T * 0.01 m^2) cos(0) - 0  / (2 sec)   =  .005 V 
 

If you had N=1000 coils (loops) of wire, all stacked (coiled) up around that 
same perimeter, you’d get |EMF|=5 V, enough to light up a small bulb. But 
remember, you’d only have this voltage for those 2 seconds while B was 
changing! Once B reaches 0 (and presumably stays there), there is no more 
change, and so |EMF| goes back to 0.   
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What’s that minus sign about in Faraday’s law? 
Don’t plug it in blindly - it’s only there as a reminder, you must figure out 
the direction of the induced current flow, or voltage difference (the direction 
of the EMF) by Lenz’s Law: 
 

• Induced EMF tries to cause current to flow. If current flows, it will create a 
new (usually small) B field of its own, which we will call B(induced).  
(You’ll need to remember RHR #1b: how currents in a loop produce B 
fields)  
 

• I will call the original or “outside” field:  B(external)  
The direction of B(induced) opposes the change in the original B. 
\Note: B(induced) does NOT necessarily oppose B(external)(!!)   
It is opposite the CHANGE of B(external) (or more accurately, the change 
of  flux).  B is a vector, you really have to think about the direction of the 
change of that vector.... 
 

Lenz’s law is a mouthful! It tells you the direction that the induced current 
will flow. Nature creates a B(induced) to fight the change. 

 
 

Example:   Consider a B(ext) that is up, and 
pierces a wire loop, as shown.  It might be 
caused by a big old magnet or something.  
If B(ext) stays constant, there is no change,  no 
current spontaneously flows around the loop.   
 

If B(ext) starts to decrease, nature will try to fight that change. 
(Remember, if an “up vector” is decreasing, the change is DOWN) 
Lenz’s laws says a current will flow (or try to flow) to induce an upwards B 
field, to try to keep things as they were.  
B(induced) may be small: it probably won’t succeed, but it tries.  
The direction of induced current is shown to the left. 

B(induced) points up, opposite the change in B(ext).  (Here, 
this just happens to be the same direction as B(ext) was 
originally, but that’s irrelevant.)   

 
If B(ext) instead starts to increase with time,  
then to fight that change you will induce a 
downward B, as shown. 

 B(ext)

 wire loop

induced current

induced current
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You should look at Giancoli Fig 21.7 and work out all those examples for 
yourself. (DO NOT read the answers first!! Think about them -  it takes 
practice to get Lenz’s law.) 
 

Example:  A metal bar slides along 
conducting metal tracks in a uniform 
B field pointing into the page. 
 
Push the bar to the left (as shown), 
and consider the conducting loop 
consisting of rail + slider. 
 
The area inside that loop is increasing, and so flux through the loop (B*A) is 
also increasing.  (A = L*x, and x is increasing with time)  
 

|EMF| = | ΔΦ/Δt | = |B ΔA / Δt |   = B L Δx / Δt = B Lv 
(Because v = Δx / Δt is the speed of the sliding bar) 
That means current flows around the loop, by Faraday’s law. 
If you put a light bulb somewhere in that circuit, it’d glow. 
The bigger B is (or the faster you slide the rod), the more current. 
 
Now, what direction will the current flow, CW or CCW?  
This requires Lenz’s law! 
 

The external flux is into the page and increasing with time. So the change in 
flux is into the page. (Do you see that?)  
Lenz’s law says current will start to flow to fight the change.   
 

That current will induce a new B that points out  of the 
page.   By RHR #1b, that means  CCW. 
 
Note:  It’s not that B(induced) points out of the page 
because B(ext) is into the page. That’s a coincidence. It’s opposite the 
CHANGE in flux, not oppose the direction of flux.  
E.g., If instead you push the slider to the right, B(ext) is of course the same, 
but now the flux is decreasing with time, that’s opposite: the B(induced) 
will also be opposite, i.e. the current flows CW!! 
 

Giancoli Fig 21-9 is similar. Try to figure out the direction of the induced 
current there, for yourself, and only then check the text to see if you got it 
right. 

 induced current
           CCW
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There is a totally different way, kind of “Chapter 20 style”, to reach the 
same conclusion about the direction of induced current in the previous 
example.  
Consider a small + test charge sitting 
somewhere in the slider. It (and of course  
every other atom, electron, etc. too ) 
moves along with the slider to the left, 
with velocity v.  
It sits in a uniform B field. That means it feels a force (F = q v B), and the 
direction is given by RHR #2, try it yourself, convince yourself it is DOWN.  
 
But it’s a test charge in a conductor - it’s free to move.  
What that means is the B field thus forces test charges down 
the slider, which means a current I down -  exactly the 
direction we got before (from Lenz’s law) Cool - a rather different way of 
looking at it, but the same result. 
 

Final comment: We just saw there is an (induced) current flowing in the 
slider, and this current sits in a B field. Ch. 20 says any current in a B field 
will feel a force F = ILB.   
Work out the direction for yourself (!), using RHR #2. 
I claim the force in this example is to the right.  
 

That means the B field tries to slow down the slider. It’s kind of like 
magnetic friction.  If you did not continue to push that slider to the left,  the 
induced current feels this force that would slow the slider down to a halt.   
 

We call any induced current like this, caused by conductors moving in 
magnetic fields, eddy currents (maybe because they look a little like water 
eddy’s in a river?)   
 

Eddy currents always cause slowing or “braking” forces. They behave in 
some ways like magnetic friction. This effect is used to slow down some 
kinds of trains -  it’s a “retarding” force proportional to velocity. By 
changing the resistance in the rest of the track you can change the magnitude 
of the current, hence the force - and it’s easy to control electronically.  Eddy 
currents have many other industrial applications, including in detecting coins 
in coin vending machines!  
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Different example:  Put a coil of metal into a fixed B(external) 
 
 
 
 
 
 
 
 
 
 

We’ve seen this setup before, in Ch. 20. (Remember, if you run a current I 
through that coil of wire, RHR #2 says there are forces that twist the loop. 
That’s a MOTOR, putting current into it causes mechanical motion.) 
 

But you can also do the opposite:  suppose you (or a waterfall, or a steam 
engine...) mechanically force the loop to start to rotate.  
What happens then? 

 
The flux through the coil,  
Φ = B A cosθ, is changing, 
because θ is now steadily 
changing. 
 
 
 
 
 

 

Faraday’s law says  
|EMF| = | ΔΦ/ Δt |  =  B A Δcosθ/ Δt.    (B and A are both constant!)  
 

There is an induced EMF, a current spontaneously starts to flow in the loop.  
If you have wires leading out from the loop (like in the picture of the motor 
in Ch. 20) current flows to the outside world.  
 
This is an electrical generator.  It’s just like a motor, only opposite:  
mechanical motion causes current. (You can even use the same apparatus 
either way, as a motor or as a generator.)   
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What is the direction of the current in the last example? 
At the moment shown, the flux through the coil is to 
the right, and it is increasing. 
 
Think about this (it’s 3-D spatial imagery) 
The B field isn’t changing, but it’s “piercing” the loop 
more and more efficiently, around the moment 
shown.   
Let me exaggerate to convince you:   

 
 
 
The flux is increasing to the 
right.  
 
 
 

 

 
Lenz’ law says the induced current will fight this 
change, i.e. you will create a B(induced) that must 
point to the left.  By RHR #1b,  
that means the current at the moment in question 
flows around the loop as shown here.  
 
But now let’s look again just a little later... 

The flux is still, at this moment, to the right. 
But, now it is decreasing with time. (In a 
moment, there won’t be any flux, when the 
loop is again parallel to the B field)  
 

If flux is “right but decreasing”, that means the change is leftwards. 
 

To fight the change, you need to make a current 
which will make a “rightwards” B field, like this: 
 
Notice how the current has flipped its direction.  

 B just before :

 No flux through loop

 just after :

 max flux through loop

 B
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Bottom line:  You do work on the coil to rotate it. In return, you get an 
electrical current out. This is precisely how our big power plants work - 
large coils being rotated in a big fixed B field (or sometimes, the magnet 
gets rotated around a fixed coil.)  
 
The current is flipping direction each partial rotation of the coil (see the 
previous page for this story).  If you graph current coming out of the coil as 
a function of time, it looks like this: 

 
 
The frequency is exactly the same 
as the mechanical frequency of 
the rotating loop. In the US, that 
means you must turn that loop  
60 times/sec, or 60 Hz.  
 
 
Suppose you stopped pushing.  
You might imagine that if there 

was no friction, the loop would keep turning, giving you “free electricity”. 
No such luck. There is still a current flowing, and this current is in an 
external B field, so it feels a force. RHR #2 tells the direction (work it out, 
looking at the pictures on the previous pages.) 
At all times, the resulting forces make a torque that acts to slow down the 
loop. This is the “eddy currents” story again. Induced currents are caused by 
conductors moving in a B field. They will always act to slow things down.  
 
This is a law of nature. If the forces ever acted in the other direction, i.e. to 
speed things up, you’d be getting something for nothing, violating 
conservation of energy. (Lenz’s law, that minus sign in Faraday’s law, is 
basically the statement of conservation of energy) 
 

 Current

 time

 +Imax

 -Imax

 T

period, T
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Transformers:   
These are clever (and simple) devices to transform AC voltages.    
You need two coils:   
the “input wire” or “primary winding”,   
and the “output wire” or “secondary winding”.   
The wires are usually wrapped around iron. There are no moving mechanical 
parts needed. 
 

 

If V(in) is steady (I(in) is steady) then B(induced) through the coils is 
steady. The flux Φ through the secondary coil is therefore steady, and 
Faraday’s law says V(out)=0:   no output current, or voltage. 
 

Moral:  transformers do nothing if the input is steady, or DC.  
 

But, if V(in) is AC, then the induced B keeps flipping direction, which 
means Φ is changing, and Faraday says we will induce an EMF in the 
secondary coil. That means there is a V(out).  
  

Faraday says, specifically,  
V(in)   =  Np ΔΦ/Δt,  
V(out) =  Ns ΔΦ/Δt.     
The flux Φ is the same through both coils, because an iron core will guide 
all the B field lines through the secondary. (B and Area are thus the same for 
both coils...) 
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Dividing those last two equations gives 
 

 V(in) / V(out) =  Np / Ns .          (But, only if Vin is AC!)  
 

or, of you prefer,  V(out) = V(in) * (Ns/Np)  .  
 

A “step up” transformer has more secondary windings, Ns > Np, 
which means V(out) > V(in).   
You get more voltage out than you had to start with. 
 
A “step down” transformer has Ns < Np,  so V(out) < V(in) 
 
A step up transformer almost looks like something for nothing: V(in) could 
be small, and you could get a huge Voltage out (!?) Well....yes, V(out) can 
indeed be greater than V(in), but  
 

Power(out) = Power(in).   
 

or if you prefer 
 

V(out)*I(out) = V(in)*I(in)   
This is conservation of energy.  A good transformer is very efficient, but 
energy is still conserved!  
 

  I(out) = [V(in)/ V(out) ] * I(in) = (Np / Ns) * I(in)  . 
 
Step up transformers do increase the voltage, but at the cost of decreasing 
the current you get out. In reality, you always lose a little power to heating, 
eddy currents in the iron, etc.  
A good transformer might give you P(out) = 99% P(in)... 
 
Many household devices use step down transformers, e.g. chargers, which 
don’t need much voltage (certainly not 120V for a little 1.5 V battery), but 
they want lots more current than the 15-30 A your wall sockets are limited 
to.  
 
Other household devices use step up transformers, e.g. your TV set needs 
much higher voltages than 120V, but not much current is needed.    
 
Transformers are a wonderful invention, and allow for much of our electrical 
technology and distribution system.  



21-12 (SJP, Phys 2020) 

© University of Colorado at Boulder 
 

Example:  A 100:1 step down transformer: 
 
This is the generic symbol used 
for a transformer. 
 
“100:1 step down” means 
Np/Ns = 100:1 
 
 
 

Suppose in this circuit that Vp=120 V (it’s plugged into a regular wall 
socket),  and Ip=15 A (a typical value you might get out of normal wall 
sockets before the circuit breaker blows.) 
Then, Vs = (1/100) Vp = 1.2 V. 
Is = (100)* Ip = 1,500 A. 
 
You could never get 1500 A directly out of the wall!   
This transformer puts lots of currents out, just at a lower voltage. 
Notice that Power(in) = 120V * 15 A = 1800 W 
Power(out) = 1.2 V * (1500 A) = 1800 W.  (Energy is conserved) 
 
Example:  If you wanted to melt a 12 cm long nail by running current 
through it, could you do it by just wiring it straight into your wall plug?   
Using resistivity for iron, I’d estimate the nail’s resistance to be  
R = ρ * L / A = (10^-7 Ω m) * (0.12 m / (10^-5 m^2) = 1.2E-3 Ω. 
(I got the area by π r^2, with r about 2 mm, kind of a fat nail?)  
If you plugged this into the wall (like I did the pickle), you’d expect 
I = V/R = (120 V) / (1.2 E-3 Ω) = 100,000 Amps. Yikes! You’d blow the 
fuse, nothing would happen.  But if this was the “R” in the figure above, 
then I = (1.2 V / 1.2E-3 Ω) = 1000 A, no problem. 
(You’d be drawing 10 amps from the wall, do you see why?)  
But it’s still putting out 1000 A*1.2 V = 1200 W of power,  
which almost surely would melt a nail! 
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The power company (Excel) sends currents over long distances. They do 
lose power in the lines due to resistance, P(loss) = I^2*R. 
They’d prefer to transmit a small current, to avoid this power loss (because 
the resistance of the lines is something constant) But you and I demand a 
certain average power = V*I.  They want to supply this to us. They want to 
give us all the V*I we ask for, but send less current through the cables, so 
they use VERY HIGH voltages! (Large V*small I gives the power we ask 
for, while small I through the lines means less loss.)   
 
They have step up transformers at the power plants, which can take the 
voltage up to a million volts on some long distance power lines.  At the edge 
of cities, they have step down transformers (at transformer stations, there’s 
one not far from my house) which convert it down to lower voltage, perhaps 
2000 V.  Then, right at your house, there’s one last step-down transformer to 
take it down to 120 V (or actually 220V). 
 
Example:   Say my house uses 10^4 W of power. (A little high, but not an 
unusual number for a big household, during the daytime) Suppose the 
transmission lines have a total resistance, all the way from power station to 
my house, of 1 Ω.  (That’s pretty small)  
If they just transmitted at 120 V all the way, I’d use 
I = P/V = (1E4 W/120 V) =  83 A.   
This current has to go through their lines, losing power of  
 I^2*R = (83A)^2*(1 Ω) = 7,000 W.   
Yikes! 70% of the power I need is wasted in heating their lines! 
 
But if they used 120,000 V instead (using transformers), then 
I = P/V = (1E4 W/ 120,000 V) = 0.083 A.  
This current goes through their lines, losing power of 
I^2*R = (.083A)^2 * (1Ω) = .007 W.  Nothin’!   


