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Light waves: diffraction and interference 
 

In Ch. 22 we learned light is a wave, and then in Ch. 23 we promptly 
ignored this fact! It took people a long time to notice it's a wave, 
because λ is so small.  
(Recall, violet light has λ=400 nm, red light is 700 nm) 
 

Here is a "Ch. 23" picture of light coming in from the left, hitting a 
wall with a hole or slit in it, and forming a shadow on a distant wall. 

This was basically Newton's idea (and is quite accurate!) 
 

However, if the size of the slight is very small - somewhere on the 
same scale as the λ of light, then the picture is very different. 

The lines I drew are NOT the same as in the previous picture, they 
are not "rays".  Now we're trying to indicate the wave nature by 
drawing "wavefronts". You might think of this as connecting points 
where |E| is cresting. These lines are now perpendicular to the 
direction of travel of the waves. (Think of it as looking down at 
waves on the ocean, and what I'm drawing is the lines where the 
waves are highest) In the picture above, the waves move right. 
 

(The image on the screen isn't quite right - we'll make a more 
accurate picture soon!) 
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Brief review of interference of waves (Phys 2010 Giancoli Ch. 11.11) 
 

Imagine two traveling waves (same frequency, speed, and direction) 

If they are "in phase" (meaning, the peaks are lined up) and if the 
waves are traveling at the same place and time, they will add up, they 
superpose, as waves always do. The resulting wave, the sum of the 
two, has the same f, c, and direction, but twice the amplitude.  The 
waves have constructively interfered. 
 

Now take those same two waves, but let them be exactly "out of 
phase" (meaning, the peak of one is at the same place as the trough of 
another!)  Then the result when they superpose is cancellation, the 
"+" of a peak adds to the "-" of a trough giving zero, no wave at all! 

The waves have destructively interfered. 
 

You can have two waves heading towards a common point. At that 
point the waves will interfere. If they are "in phase", they will add up 
to double the amplitude.  

In this figure, both waves peak at the 
point where they meet - they add up: 
constructive interference.  
 

If you were to shift one of the waves 
a little, so one peaks where the other 
"troughs" at the meeting point, they 

would instead be completely "out of phase", they would exactly 
cancel: destructive interference at that one point. 
[If they are just partly out of phase, they will add (interfere, superpose) but not to 
either extreme. Two waves of amplitude A can add up to a wave of anything 
between 0 and 2A.] 
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Huygens (a contemporary of Newton) came up with a neat way to 
think about traveling waves: 

Each point on any 
wavefront can be 
considered to be the source 
of a new outgoing spherical 
wave.  
 
In this figure, only one tiny 
point (center of the gap) of 
the incoming wavefront is 
allowed to propagate to the 
right. 

What you get is an outgoing spherical wave, with the same f, λ , and 
c as the incident plane wave.  The little gap acts as a single "point 
source" of wave of frequency f... 
 

With a wider gap, each point in the 
gap acts as a point source. Each of 
those points emits spherical waves!   
 
These waves are "on top of each 
other", you have to superpose 
them, add them up, to figure out 
the resulting outgoing wave. 
 
 
(The outgoing wave here is not 

spherical any more, nor is it a plane wave. It's something in-between) 
 

We won't do that math in this class (it's a little tricky, though 
certainly not impossible. Huygens worked it out 350 years ago!) but 
the result in the end if often very simple, and quite reasonable.  
 
(Giancoli's figures are better than mine, check them out) 
 

 wave fronts
(plane wave)

 c

 λ

 spherical wave

 wave fronts
(plane wave)

 c

 λ



24-4 (SJP, Phys 2020) 

© University of Colorado at Boulder 
 

As an example, Huygen's principle fully predicts the phenomenon of 
refraction (!)    The details are, as I said, tricky (again, Giancoli has 
somewhat better pictures), but the result is  straightforward: 

 

Waves always have  
λ f = speed, so  
 
λ1 f1 = c/n1 
λ2 f2 = c/n2. 
 
Now, here's an 
important consequence 
of Huygen's ideas:  
f1 = f2.  Why?  
As the incoming wave 
reaches the boundary 

and creates the outgoing wave, it is "jiggling" with frequency f1, and 
that's the same frequency that the new medium will jiggle with.  
(Frequency is just counting, it does not depend on what medium 
you're in. But the resulting λ does depend on the medium.)  
 

The equations above tell us that if f1=f2, then 
λ1 / λ2 = n2/n1  (can you see how I got that?)  
That means in the picture above: λ2 is smaller because n2 is bigger. 
Wavelength depends on speed. In a "fast medium" (smaller n), the 
wavefronts are more spread out, λ is bigger.   
The picture shows wavefronts, remember that the "rays" these 
represent are perpendicular to the wavefronts.  (I have drawn two 
sample rays in the figure)  The angle at the boundary is bent. 
Refraction! 
 

Huygens principle predicts that if light hits small slits, you should be 
more likely to observe the "wave nature" of light. (Look back at the 
pictures on the previous page - the outgoing wave is more noticeably 
different from the incoming wave when the slit size is small) 
To really see this effect in the lab, it helps (a lot!) to have 
monochromatic light (one pure wavelength, which means one pure 
color)  and also coherent light (meaning nice incoming plane waves 
with all rays "in synch" with each other).  (Lasers are a great source 
of monochromatic, coherent light, but they're not the only one!)  
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Young's Double Slit Experiment: The first observation of 
interference of visible light! 

Huygens says each of the 
two slits will act as a  point 
source for outgoing 
spherical waves.   
 

On the right, light is 
emerging (heading off in all 
directions!) from each slit. 
 

The incoming light is 
monochromatic (one λ), 

and coherent, which means that if the E field is peaking at the top slit 
at some instant in time, it is also simultaneously peaking at the 
bottom slit. 
 

What will we see on a screen far off to the right?  

The old "particle" or "ray" model predicts 
this: two bright spots, one directly behind 
each slit.  
 

This is experimentally dead wrong!!  
(At least, if the slits are very small 
compared to λ.) 
 

Huygens model of interfering waves 
predicts this - (We'll see why soon): 
And, this is what you really see.   
Never mind Giancoli Fig 24-9 and 10, for 
now!  For two SMALL slits, each bright 
"bump" in the image is equally bright.  
You see a bunch of bright spots over 
there!! (We'll explain exactly why you get this pattern on the next 
page)  They are not necessarily bright right behind the slits, either! 
And it's brightest RIGHT BEHIND THE "WALL" between the 2 
slits, where you'd expect a shadow.  
 

This is weird. "Shadows" are what we're used to, but the wave nature 
of light says it can effectively bend around corners. This 
phenomenon is called diffraction.  It's not so intuitive (for light.) 
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How can this be? What is going on? 
And, how do you figure out where the bright spots will be?  
 

What we have is two slits - two point sources of light, and they are in 
phase with each other.  If light goes the same distance from each (e.g. 
the waves leave the sources and head to the "midpoint" on the screen) 
then the two waves will arrive in phase (in synch) - they will 
constructively interfere, and you get a bright spot on the screen there. 

 
 

Yes, it's bright right smack in 
the center, just exactly where 
you'd expect a dark shadow 
from that central wall!!  
 
 
 

Are there any other bright spots?  What really matters is whether the 
TWO waves reach the screen in phase.  
 

Draw the rays: the light from each slit travels different distances.  
If the two waves BEGIN in phase, and travel different distances, they 
might still be in phase, or not, it all depends on the difference in path 
lengths.  (This is tricky to visualize!) 

 

Let's look at a spot on the 
screen a height "x" above 
the center line, 
a distance L (far) away 
from the sources.  
Is it bright or dark there?  
 
 

It all depends on the difference in the path lengths of the two rays... 
 
 
 
(I'm making an assumption 
here, a limit... that L is 
HUGE compared to d.   
That means that the figure 
really looks like this: 
  
I just exaggerated "d", above, so we could look at the geometry more easily.) 
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The question is: is the extra distance EXACTLY a whole number of 
full wavelengths? If it is, then the two waves are still in phase! 
 

Think about the condition for waves to be in phase. If a wave travels 
through exactly ONE full wavelength, it's back in phase. Same if it 
travels through exactly TWO full wavelengths,...   
 

So if the extra distance traveled by one ray compared to the other 
exactly equals λ (or 2λ, or 3λ, or mλ, where "m" is any integer) then 
the two waves are still (or back) in phase, and they constructively 
interfere, which means the spot we labeled "x" will be bright. 
 

If, on the other hand, one wave travels through HALF a wavelength 
extra, it's exactly out of phase! That means the two waves 
destructively interfere, it would be totally dark at point "x". (Same 
whether the path length difference is 0.5 λ,  or 1.5λ, or 2.5λ, etc...) 
 

We need to look at the picture again, this time a "zoom in" right 
down next to the slits... 

The picture shows that the path length difference is d sin(θ).  
The geometry is tricky! Think about it, compare to the previous 
pictures, see if you can really get it for yourself. 
 

What we've just argued is that if that path length difference is an 
INTEGER number of λ's, we get constructive interference, and thus 
the spot x will be bright:  
 

Constructive:   d sin(θ) = m λ,     (where m=any integer, 0, 1, 2, 3, ...)  
 

Similarly,  if the path length difference is a HALF integer number of 
λ's, we get destructive interference, the spot x will be dark: 
Destructive:   d sin(θ) = (m+1/2) λ,       (m=any integer, 0, 1, 2, 3,...) 
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Quick review of radians, and the "small angle" approximation: 
 

R = radius 
s = "arc length" along circle 
 

θ = s/R   defines the angle in radians. 
 

Full circumference is s = 2 π R.  
That means  θ  (all the way around) = s/R = 2 π R/R  = 2 π  rad. 
Or,   360 deg =  2 π  rad. 
 

Now look at a small wedge, and "square off" the curvy side: 
We know  θ = s/R  
and we know tan θ = x/R 
and we know sin θ = x/(R+δ). 
(Those all come from "sohcahtoa") 
But, if θ  is very small, we see s ≈  x (roughly, 

just look at the picture) 
and δ ≈ 0, too.     Conclusion:   if θ  is very small,  θ ≈ tanθ ≈ sinθ ! 
(That would also mean x = R tanθ ≈ Rθ ) 
Example:  (try this on your calculator!)  1 deg = .017453 rad,  
sin(1 deg) = .017452 and tan(1 deg) = .017455.  These are very close! 
 

Finally, let's go back to our "2 slit interference" picture. I'm going to 
simplify the picture by only drawing ONE "average" ray, not both of 
them. (Remember, d is really tiny compared to L!)  

We already argued there are 
bright spots whenever   
d sin(θ) = m λ. 
 
Note: θ = tan−1(x / L) , 
 

Since L is huge, we frequently have x/L small, and then θ≈  x/L  
So, for small x, and big L,  d sin(θ) = m λ  becomes  d x/L ≈  m λ, or 
BRIGHT SPOTS:  x ≈m λ L / d   (m = 0, 1, 2, 3, ...) 
DARK SPOTS   x ≈ (m +1/2) λ L / d   (m = 0, 1, 2, 3, ...) 
[  If x/L is not small, just use the correct formula, d sin(θ) = mλ   
   Use this to find θ, then solve for x = R tan(θ). ]  
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What if we had more than 2 (equally spaced) slits? 
Draw the picture - draw ALL the rays coming from all the slots 
towards a common point at the screen.  You should convince yourself 
that as long as d sin(θ) = m λ, (m=0,1,2,...) then the light from ALL 
the slots will be in phase, constructive interference, VERY bright! 
At any other angle, you'll get destructive (or at least partially 
destructive) interference. 
If θ is "slightly" off one of those magic bright values, then, say, the 
rays from slit #1 and slit #2 won't be very much out of phase (so if 
there are only two slits, it's darker, but only a little, if you shift a 
small angle away from the brightest point). But with many slits, slit 
#1 will be way out of phase with some other slit, maybe not #2, but 
one a few further down the row.   

 

So you end up getting VERY bright spots at 
the places where the formula for 2 slits says it 
should be bright, and they're much sharper.  
(It's very dark almost everywhere else.)  
 

This is handy for clearly separating the bright 
spots.  
 

We call a device like this, with many slits, a diffraction grating.   
 
They're very useful! Why? Notice the positions  x ≈m λ L / d  
for the bright spots depend (linearly) on the wavelength  λ.   
Different colors incident on the same 2 slits (or grating) will make 
bright spots at different locations!  The separation of the colored 
spots (x) is easy to measure, and is proportional to λ! 
That gives you a very handy  and easy way to measure wavelengths 
of light. (Think about that a bit - how can you measure something so 
fantastically tiny? λ of light is just a few thousand times larger than 
an atom.) 
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Example:  Consider 2 slits, a distance d=0.01 mm apart. 
There is a screen L=2m away.  Monochromatic red light (λ = 700 
nm) 
shines on the 2 slits.  What will the brightness pattern look like over 
at the screen? 

Lingo:  x2 is the "m=2" or "2nd order" line. 
 
x1 = 1st bright spot above the center. The "first 
order" line, or "m=1" line.  x1 = 1* λ L / d 
Here, x1 = (700E-9 m)*(2m)/(.01E-3 m) = .14 m 
 

"zeroth" order, or m=0 line, in middle. (m=0, x=0) 
  
x-1 = 1st bright spot below the center, "m=-1" line.  
x-1 = -1* λ L / d = -.14 m  
(Note the symmetry,  |x-1| = x1.) 
Etc.   
 

Note:  θ1 = 1λ / d = .07 rad,  θ2 = 2 λ / d = .14 rad, 
etc. 
(If x starts getting big, you should go back to the correct formula for 
the "angles of maxima", namely d sin(θ) = m λ.  ) 
 
• If we'd used  blue light (500 nm) instead of red, the pattern is a little 
different. x1 is slightly smaller, the bright spots are squeezed together 
more, towards the center (which is unchanged) 
• If d was bigger, the pattern is also squeezed, in a similar way.  
 
That's why it's so hard to notice this pattern in normal life.   
For visible light, λ is SO small, and d is so much bigger, that the 
bright spots all squeeze right next to each other - you can't even 
NOTICE that there are dark and bright spots. To make it worse, all 
the colors are normally present, with their bright spots in slightly 
different places... so it really just looks bright all over! 
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What if we used a grating with 1000 lines/cm instead of 2 slits? 
First, we have to think about the spacing between these lines... 
1000 lines/cm means 1cm/1000 lines,  or 1/1000 cm per line, 
or .01 mm per line - that's the same distance between lines as we had 
in the previous problem! ("lines" in a grating can be though of as 
analogous to "slits")  
 
So the pattern is identical to that in the 
previous problem, except that the spots are 
brighter, and sharper.   
The x's (positions) of the bright spots are the 
same. 
 
If you shine white light (rather than 
monochromatic) there are many  λ's present. Each color has bright 
spots at different positions x. So, the colors appear to get spread out 
on the screen. You get a little rainbow, a spectrum at each order. 
(One spectrum for each "peak" in the picture above)  
 
Since x1 =  λ L/d, measuring "x" for different colors can tell you 
what the wavelength of each color is. 
 
Some light sources have different colors, but not all colors. (E.g., 
Mercury arc-lamps used on highways look yellowish-white, but do 
not contain all wavelengths with anything near equal intensity)   
 
A diffraction grating which spreads out colors allows you to quickly 
and easily see which colors are present in the source. You will see 
lines of different colors at each order.  This is a unique "fingerprint" 
of the light source. This technique is called spectroscopy, and we use 
it to determine the chemical composition of materials. In this way, 
we can even deduce what elements are present in distant stars, by 
analyzing the light they emit! 
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Another way to get a spectrum is with a prism. How does this 
work? Different colors (λ) have slightly different indices of refraction 
"n" in normal glass. So, they get bent slightly differently. 

 
 
 
 
 
 
 
 
 

Notice that the spread of colors is opposite the way it goes with a 
grating. (In a grating, red has longer wavelength, and so bends more. 
In a prism, red has smaller "n", so it bends less.) The mechanisms 
involved are really totally different. 
 
Rainbows are caused by the prism effect. Different colors bend 
through different angles as they pass from air into water droplets. The 
result is that white light gets dispersed into a spectrum of colors. The 
sun produces all the colors of light, so the rainbow has them all. (See 
Giancoli Fig 24-16) 
 
Take a look at a CD.  It's got a lot of closely spaced lines (and is 
reflective), it acts like a grating! It's a "reflection" grating rather than 
a "transmission" grating, but the physics is the same. Again, at 
different angles, you see different colors. Check it out - hold it at an 
angle from a single light source. Can you see "ROYGBIV"? If you 
keep tilting, can you see the second order? How many orders does it 
have? Can you estimate the spacing between the lines?  
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