
 

Light waves: diffraction and interference 
 

Earlier we learned light is a wave, and then we promptly ignored this 

fact! It took people a long time to notice it's a wave, because  is so 

small.  

(Recall, violet light has =400 nm, red light is 700 nm) 
 

Here is a ray optics picture of light coming in from the left, hitting a 

wall with a hole or slit in it, and forming a shadow on a distant wall. 

This was basically Newton's idea (and is quite accurate!) 
 

However, if the size of the slight is very small - somewhere on the 

same scale as the  of light, then the picture is very different. 

The lines I drew are NOT the same as in the previous picture, they 

are not "rays".  Now we're trying to indicate the wave nature by 

drawing "wavefronts". You might think of this as connecting points 

where |E| is cresting. These lines are now perpendicular to the 

direction of travel of the waves. (Think of it as looking down at 

waves on the ocean, and what I'm drawing is the lines where the 

waves are highest) In the picture above, the waves move right. 
 

(The image on the screen isn't quite right - we'll make a more 

accurate picture soon!) 



 

Brief review of interference of waves (Phys 2010 Giancoli Ch. 11.11) 
 

Imagine two traveling waves (same frequency, speed, and direction) 

If they are "in phase" (meaning, the peaks are lined up) and if the 

waves are traveling at the same place and time, they will add up, they 

superpose, as waves always do. The resulting wave, the sum of the 

two, has the same f, c, and direction, but twice the amplitude.  The 

waves have constructively interfered. 
 

Now take those same two waves, but let them be exactly "out of 

phase" (meaning, the peak of one is at the same place as the trough of 

another!)  Then the result when they superpose is cancellation, the 

"+" of a peak adds to the "-" of a trough giving zero, no wave at all! 

The waves have destructively interfered. 
 

You can have two waves heading towards a common point. At that 

point the waves will interfere. If they are "in phase", they will add up 

to double the amplitude.  

In this figure, both waves peak at the 

point where they meet - they add up: 

constructive interference.  
 

If you were to shift one of the waves 

a little, so one peaks where the other 

"troughs" at the meeting point, they 

would instead be completely "out of phase", they would exactly 

cancel: destructive interference at that one point. 
[If they are just partly out of phase, they will add (interfere, superpose) but not to 

either extreme. Two waves of amplitude A can add up to a wave of anything 

between 0 and 2A.] 
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Huygens (a contemporary of Newton) came up with a neat way to 

think about traveling waves: 

Each point on any 

wavefront can be 

considered to be the source 

of a new outgoing spherical 

wave.  

 

In this figure, only one tiny 

point (center of the gap) of 

the incoming wavefront is 

allowed to propagate to the 

right. 

What you get is an outgoing spherical wave, with the same f,  , and 

c as the incident plane wave.  The little gap acts as a single "point 

source" of wave of frequency f... 

 

With a wider gap, each point in the 

gap acts as a point source. Each of 

those points emits spherical waves!   

 

These waves are "on top of each 

other", you have to superpose 

them, add them up, to figure out 

the resulting outgoing wave. 

 

 

(The outgoing wave here is not 

spherical any more, nor is it a plane wave. It's something in-between) 
 

We won't do that math in this class (it's a little tricky, though 

certainly not impossible. Huygens worked it out 350 years ago!) but 

the result in the end if often very simple, and quite reasonable.  

 

(Giancoli's figures are better than mine, check them out) 
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As an example, Huygen's principle fully predicts the phenomenon of 

refraction (!)    The details are, as I said, tricky (again, Giancoli has 

somewhat better pictures), but the result is  straightforward: 
 

Waves always have  

 f = speed, so  

 

1 f1 = c/n1 

2 f2 = c/n2. 

 

Now, here's an 

important consequence 

of Huygen's ideas:  

f1 = f2.  Why?  

As the incoming wave 

reaches the boundary 

and creates the outgoing wave, it is "jiggling" with frequency f1, and 

that's the same frequency that the new medium will jiggle with.  

(Frequency is just counting, it does not depend on what medium 

you're in. But the resulting  does depend on the medium.)  
 

The equations above tell us that if f1=f2, then 

1 / 2 = n2/n1  (can you see how I got that?)  

That means in the picture above: 2 is smaller because n2 is bigger. 

Wavelength depends on speed. In a "fast medium" (smaller n), the 

wavefronts are more spread out,  is bigger.   

The picture shows wavefronts, remember that the "rays" these 

represent are perpendicular to the wavefronts.  (I have drawn two 

sample rays in the figure)  The angle at the boundary is bent. 

Refraction! 
 

Huygens principle predicts that if light hits small slits, you should be 

more likely to observe the "wave nature" of light. (Look back at the 

pictures on the previous page - the outgoing wave is more noticeably 

different from the incoming wave when the slit size is small) 

To really see this effect in the lab, it helps (a lot!) to have 

monochromatic light (one pure wavelength, which means one pure 

color)  and also coherent light (meaning nice incoming plane waves 

with all rays "in synch" with each other).  (Lasers are a great source 

of monochromatic, coherent light, but they're not the only one!)  
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Young's Double Slit Experiment: The first observation of 

interference of visible light! 

Huygens says each of the 

two slits will act as a  point 

source for outgoing 

spherical waves.   
 

On the right, light is 

emerging (heading off in all 

directions!) from each slit. 
 

The incoming light is 

monochromatic (one ), 

and coherent, which means 

that if the E field is peaking at the top slit at some instant in time, it is 

also simultaneously peaking at the bottom slit. 
 

What will we see on a screen far off to the right?  

The old "particle" or "ray" model predicts 

this: two bright spots, one directly behind 

each slit.  
 

This is experimentally dead wrong!!  

(At least, if the slits are very small 

compared to .) 
 

Huygens model of interfering waves 

predicts this - (We'll see why soon): 

And, this is what you really see.   

Never mind Giancoli Fig 24-9 and 10, for 

now!  For two SMALL slits, each bright 

"bump" in the image is equally bright.  

You see a bunch of bright spots over 

there!! (We'll explain exactly why you get this pattern on the next 

page)  They are not necessarily bright right behind the slits, either! 

And it's brightest RIGHT BEHIND THE "WALL" between the 2 

slits, where you'd expect a shadow.  
 

This is weird. "Shadows" are what we're used to, but the wave nature 

of light says it can effectively bend around corners. This phenomenon 

is called diffraction.  It's not so intuitive (for light.) 
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How can this be? What is going on? 

And, how do you figure out where the bright spots will be?  
 

What we have is two slits - two point sources of light, and they are in 

phase with each other.  If light goes the same distance from each (e.g. 

the waves leave the sources and head to the "midpoint" on the screen) 

then the two waves will arrive in phase (in synch) - they will 

constructively interfere, and you get a bright spot on the screen there. 
 
 

Yes, it's bright right smack in 

the center, just exactly where 

you'd expect a dark shadow 

from that central wall!!  
 
 

 

Are there any other bright spots?  What really matters is whether the 

TWO waves reach the screen in phase.  
 

Draw the rays: the light from each slit travels different distances.  

If the two waves BEGIN in phase, and travel different distances, they 

might still be in phase, or not, it all depends on the difference in path 

lengths.  (This is tricky to visualize!) 
 

Let's look at a spot on the 

screen a height "x" above 

the center line, 

a distance L (far) away 

from the sources.  

Is it bright or dark there?  

 

 

It all depends on the difference in the path lengths of the two rays... 
 

 

 

(I'm making an assumption 

here, a limit... that L is 

HUGE compared to d.   

That means that the figure 

really looks like this: 

  

I just exaggerated "d", above, so we could look at the geometry more easily.) 
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The question is: is the extra distance EXACTLY a whole number of 

full wavelengths? If it is, then the two waves are still in phase! 
 

Think about the condition for waves to be in phase. If a wave travels 

through exactly ONE full wavelength, it's back in phase. Same if it 

travels through exactly TWO full wavelengths,...   
 

So if the extra distance traveled by one ray compared to the other 

exactly equals  (or 2, or 3, or m, where "m" is any integer) then 

the two waves are still (or back) in phase, and they constructively 

interfere, which means the spot we labeled "x" will be bright. 
 

If, on the other hand, one wave travels through HALF a wavelength 

extra, it's exactly out of phase! That means the two waves 

destructively interfere, it would be totally dark at point "x". (Same 

whether the path length difference is 0.5 ,  or 1.5, or 2.5, etc...) 
 

We need to look at the picture again, this time a "zoom in" right 

down next to the slits... 

The picture shows that the path length difference is d sin().  

The geometry is tricky! Think about it, compare to the previous 

pictures, see if you can really get it for yourself. 
 

What we've just argued is that if that path length difference is an 

INTEGER number of 's, we get constructive interference, and thus 

the spot x will be bright:  
 

Constructive:   d sin() = m ,     (where m=any integer, 0, 1, 2, 3, ...)  
 

Similarly,  if the path length difference is a HALF integer number of 

's, we get destructive interference, the spot x will be dark: 

Destructive:   d sin() = (m+1/2) ,       (m=any integer, 0, 1, 2, 3,...) 



 

Quick review of radians, and the "small angle" approximation: 
 

R = radius 

s = "arc length" along circle 
 

= s/R   defines the angle in radians. 
 

Full circumference is s = 2 R.  

That means  (all the way around) = s/R = 2 R/R  = 2rad. 

Or,   360 deg =  2 rad 
 

Now look at a small wedge, and "square off" the curvy side: 

We know  = s/R  

and we know tan = x/R 

and we know sin = x/(R+). 

(Those all come from "sohcahtoa") 

But, if  is very small, we see s   x (roughly, 

just look at the picture) 

and too.Conclusion:   if is very small,   tan  sin 

(That would also mean x  Rtan  R  
Example:  (try this on your calculator!)  1 deg = .017453 rad,  

sin(1 deg) = .017452 and tan(1 deg) = .017455.  These are very close! 
 

Finally, let's go back to our "2 slit interference" picture. I'm going to 

simplify the picture by only drawing ONE "average" ray, not both of 

them. (Remember, d is really tiny compared to L!)  

We already argued there are 

bright spots whenever   

d sin() = m 

 

Note:   tan1(x / L) , 

 

Since L is huge, we frequently have x/L small, and then   x/L  

So, for small x, and big L,  d sin() = m  becomes  d x/L   m or 

BRIGHT SPOTS:  x m  L / d   (m = 0, 1, 2, 3, ...) 

DARK SPOTS   x  (m +1/2)  L / d   (m = 0, 1, 2, 3, ...) 
[  If x/L is not small, just use the correct formula, d sin() = m   

   Use this to find , then solve for x = R tan(). ]  
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What if we had more than 2 (equally spaced) slits? 

Draw the picture - draw ALL the rays coming from all the slots 

towards a common point at the screen.  You should convince yourself 

that as long as d sin() = m , (m=0,1,2,...) then the light from ALL 

the slots will be in phase, constructive interference, VERY bright! 

At any other angle, you'll get destructive (or at least partially 

destructive) interference. 

If  is "slightly" off one of those magic bright values, then, say, the 

rays from slit #1 and slit #2 won't be very much out of phase (so if 

there are only two slits, it's darker, but only a little, if you shift a 

small angle away from the brightest point). But with many slits, slit 

#1 will be way out of phase with some other slit, maybe not #2, but 

one a few further down the row.   
 

So you end up getting VERY bright spots at 

the places where the formula for 2 slits says it 

should be bright, and they're much sharper.  

(It's very dark almost everywhere else.)  
 

This is handy for clearly separating the bright 

spots.  

 

We call a device like this, with many slits, a diffraction grating.   

 

They're very useful! Why? Notice the positions  x m  L / d  

for the bright spots depend (linearly) on the wavelength.   

Different colors incident on the same 2 slits (or grating) will make 

bright spots at different locations!  The separation of the colored 

spots (x) is easy to measure, and is proportional to  

That gives you a very handy  and easy way to measure wavelengths 

of light. (Think about that a bit - how can you measure something so 

fantastically tiny? of light is just a few thousand times larger than 

an atom.) 
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Example:  Consider 2 slits, a distance d=0.01 mm apart. 

There is a screen L=2m away.  Monochromatic red light (700 

nm) 

shines on the 2 slits.  What will the brightness pattern look like over 

at the screen? 

Lingo:  x2 is the "m=2" or "2nd order" line. 

 

x1 = 1st bright spot above the center. The "first 

order" line, or "m=1" line.  x1 = 1*  L / d 

Here, x1 = (700E-9 m)*(2m)/(.01E-3 m) = .14 m 
 

"zeroth" order, or m=0 line, in middle. (m=0, x=0) 

  

x-1 = 1st bright spot below the center, "m=-1" line.  

x-1 = -1*  L / d = -.14 m  

(Note the symmetry,  |x-1| = x1.) 

Etc.   
 

Note:  1 = 1 / d = .07 rad,  2 = 2  / d = .14 rad, 

etc. 

(If x starts getting big, you should go back to the correct formula for 

the "angles of maxima", namely d sin() = m  

 

 If we'd used  blue light (500 nm) instead of red, the pattern is a little 

different. x1 is slightly smaller, the bright spots are squeezed together 

more, towards the center (which is unchanged) 

 If d was bigger, the pattern is also squeezed, in a similar way.  

 

That's why it's so hard to notice this pattern in normal life.   

For visible light,  is SO small, and d is so much bigger, that the 

bright spots all squeeze right next to each other - you can't even 

NOTICE that there are dark and bright spots. To make it worse, all 

the colors are normally present, with their bright spots in slightly 

different places... so it really just looks bright all over! 
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What if we used a grating with 1000 lines/cm instead of 2 slits? 

First, we have to think about the spacing between these lines... 

1000 lines/cm means 1cm/1000 lines,  or 1/1000 cm per line, 

or .01 mm per line - that's the same distance between lines as we had 

in the previous problem! ("lines" in a grating can be though of as 

analogous to "slits")  

 

So the pattern is identical to that in the 

previous problem, except that the spots are 

brighter, and sharper.   

The x's (positions) of the bright spots are the 

same. 

 

If you shine white light (rather than 

monochromatic) there are many  's present. Each color has bright 

spots at different positions x. So, the colors appear to get spread out 

on the screen. You get a little rainbow, a spectrum at each order. 

(One spectrum for each "peak" in the picture above)  

 

Since x1 =  L/d, measuring "x" for different colors can tell you 

what the wavelength of each color is. 

 

Some light sources have different colors, but not all colors. (E.g., 

Mercury arc-lamps used on highways look yellowish-white, but do 

not contain all wavelengths with anything near equal intensity)   

 

A diffraction grating which spreads out colors allows you to quickly 

and easily see which colors are present in the source. You will see 

lines of different colors at each order.  This is a unique "fingerprint" 

of the light source. This technique is called spectroscopy, and we use 

it to determine the chemical composition of materials. In this way, 

we can even deduce what elements are present in distant stars, by 

analyzing the light they emit! 

 

 

 



 

Another way to get a spectrum is with a prism. How does this 

work? Different colors () have slightly different indices of refraction 

"n" in normal glass. So, they get bent slightly differently. 

 

 

 

 

 

 

 

 

 

Notice that 

the spread of colors is opposite the way it goes with a grating. (In a 

grating, red has longer wavelength, and so bends more. In a prism, 

red has smaller "n", so it bends less.) The mechanisms involved are 

really totally different. 

 

Rainbows are caused by the prism effect. Different colors bend 

through different angles as they pass from air into water droplets. The 

result is that white light gets dispersed into a spectrum of colors. The 

sun produces all the colors of light, so the rainbow has them all. (See 

Giancoli Fig 24-16) 

 

Take a look at a CD.  It's got a lot of closely spaced lines (and is 

reflective), it acts like a grating! It's a "reflection" grating rather than 

a "transmission" grating, but the physics is the same. Again, at 

different angles, you see different colors. Check it out - hold it at an 

angle from a single light source. Can you see "ROYGBIV"? If you 

keep tilting, can you see the second order? How many orders does it 

have? Can you estimate the spacing between the lines?  
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