Student ID:	Name:
-------------	-------

PHYS 2130 Sp2015 FINAL EXAM

IMPORTANT INFORMATION that you may need:

Speed of light in empty space (c) $3.0 \times 10^8 \text{ m/s}$ Planck's constant (h) $6.626 \times 10^{-34} \text{ J-sec}$

 $\mathcal{T}_h = h/2\pi$

Coulomb's constant (k) $8.99 \times 10^9 \text{ N-m}^2/\text{C}^2$

Charge of an electron (e)

Ground state energy of electron in Hydrogen

1.6x10⁻¹⁹ C

-13.6eV

Mass of electron (kg)

Mass of proton or Mass of neutron (kg) $9.11 \times 10^{-31} \text{ kg}$ $1.67 \times 10^{-27} \text{ kg}$

hc = 1240 eV-nm $ke^2 = 1.440 \text{ eV-nm}$

 $1 \text{ electron} - \text{Volt} = 1.602 \text{ x } 10^{-19} \text{ Joules}$

 $1 \text{ nm} = 1 \times 10^{-9} \text{ m}$

Representative wavelengths: Red (680 nm); Orange (610 nm); Yellow (580 nm); Green (540 nm);

Blue (470 nm); Violet (410 nm)

Work functions of common metals: Sodium=2.28eV; Cadmium=4.07eV; Aluminum=4.08eV;

Copper=4.7eV; Lead= 4.14eV; Silver= 4.73eV; Carbon= 4.81eV; Nickel= 5.01eV;

Atomic configurations: neutral Hydrogen (H): 1 proton, 1 electron;

neutral Helium (He): 2 protons, 2 neutrons, 2 electrons

1D Schrodinger Equation:

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x,t)\Psi(x,t) = i\hbar \frac{\partial \Psi(x,t)}{\partial t}$$

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x)$$

COLOR

Honor Code Pledge

"On my honor as a University of Colorado at Boulder student I have neither given nor received unauthorized assistance on this work."

Name

Signature _____

IMPORTANT INFORMATION that you may need:

Speed of light in empty space (c)

$$3.0 \times 10^8 \ m / s$$

Planck's constant (h)

$$6.626 \times 10^{-34} \ J \cdot s$$

$$\hbar = \frac{h}{2\pi}$$

$$1.055 \times 10^{-34} \ J \cdot s$$

Charge of an electron (-e)

$$-1.6 \times 10^{-19} C$$

Mass of an electron (m_e)

$$9.11 \times 10^{-31} kg$$

Ground state energy of electron in Hydrogen

Mass of proton (m_p)

$$1.67 \times 10^{-27} kg$$

$$hc = 1240 \ eV \cdot nm$$

$$ke^2 = 1.440 \ eV \cdot nn$$

$$hc = 1240 \ eV \cdot nm$$
 $ke^2 = 1.440 \ eV \cdot nm$ $1 \ eV = 1.602 \times 10^{-19} \ J$

Representative wavelengths: Red (680 nm); Orange (610 nm); Yellow (580 nm); Green (540 nm); Blue (470 nm); Violet (410 nm)

$$1 ns = 1 \times 10^{-9} s$$

$$1 nm = 1 \times 10^{-9} m$$

$$1 \text{ } ns = 1 \times 10^{-9} \text{ } s$$
 $1 \text{ } nm = 1 \times 10^{-9} \text{ } m$ $1 \text{ } \mu m = 1 \times 10^{-6} \text{ } m$ $1 \text{ } mm = 1 \times 10^{-3} \text{ } m$

$$1 \ mm = 1 \times 10^{-3} \ m$$

1-D Time-Dependent Schrödinger Equation

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x,t)\Psi(x,t) = i\hbar \frac{\partial \Psi(x,t)}{\partial t}$$

deBroglie Relation:

$$\lambda = \frac{h}{p}$$

Energy of a photon:

$$E = hf$$