Student ID:______ Name: _____

IMPORTANT INFORMATION that you may need:

Speed of light in empty space (c) $3.0 \times 10^8 \text{ m/s}$

Planck's constant (h) $6.63 \times 10^{-34} \text{ J sec} = 4.14 \times 10^{-15} \text{ eV sec}$

Coulomb's constant (k) $8.99 \times 10^9 \text{ N m}^2/\text{C}^2$

Charge of an electron (e) $-1.6 \times 10^{-19} \text{ C}$

Mass of an electron (m_e) 9.11 x 10⁻³¹ kg Mass of a proton (m_p) 1.67 x 10⁻²⁷ kg

1 electron Volt (eV) = $1.602 \times 10^{-19} \text{ J}$ 1 MeV = $1 \times 10^{6} \text{ eV}$

 $1 \ pm = 1 \ x \ 10^{-12} \qquad \qquad 1 \ nm = 1 \ x \ 10^{-9} \ m \qquad 1 \ \mu m = 1 \ x \ 10^{-6} \ m \qquad 1 \ mm = 1 \ x \ 10^{-3} \ m$

Double Slit Interference pattern:

Maxima: $d \sin \theta = m \lambda$ Minima: $d \sin \theta = (m+1/2) \lambda$ with $m = 0, \pm 1, \pm 2, \pm 3, ...$

where d is the spacing between the slits and λ is the wavelength of the light.

Representative wavelength ranges:

Infrared (750 nm – 1000 nm) Red (620 - 750 nm) Orange (590 - 620 nm)

Yellow (570 - 590 nm) Green (495 - 570 nm) Blue (450 – 495 nm)

Violet (380 - 450 nm) Ultraviolet (380 nm – 10 nm)

Work functions of common metals:

Sodium: 2.28eV Calcium: 2.9eV Cadmium: 4.07eV Aluminum: 4.08eV

Lead: 4.14eV Silver: 4.73eV Carbon: 4.81eV Nickel: 5.01eV