de Broglie (1923): Wave-particle duality

All material particles also display a dual wave-particle behavior with

$$
\lambda=\frac{h}{p} \quad \text { and } \quad k=\frac{p}{\hbar}
$$

where λ is the (de Broglie) wavelength and k is the (de Broglie) wavenumber of the material particle.

de Broglie wavelength

Electron 1 is accelerated from rest through a potential difference of 100 V .

Electron 2 is accelerated from rest through a potential difference of 200 V .

Afterward, which electron has the larger de Broglie wavelength?
(A) Electron 1
(B) Electron 2
(C) Both have same de Broglie wavelength
(D) Impossible to tell

de Broglie wavelength

Electron 1 is accelerated from rest through a potential difference of 100 V .

Electron 2 is accelerated from rest through a potential difference of 200 V .

By how much is the de Broglie wavelength of electron 1 larger than that of electron 2

$$
\begin{array}{ll}
\text { (A) } \lambda_{1}=\sqrt{2} \lambda_{2} & \text { (B) } \lambda_{1}=2 \lambda_{2} \\
\text { (C) } \lambda_{1}=4 \lambda_{2} & \text { (D) some other relation }
\end{array}
$$

Standing waves:
For standing waves, boundary conditions mean that waves only have discrete modes.

Standing Waves on a Ring

What are the restrictions on the wavelength for a standing wave on a ring?
(A) $r=\lambda$
(B) $r=n \lambda$
(C) $\pi r=n \lambda$
(D) $2 \pi r=n \lambda$
(E) $2 \pi r=\lambda / n$

Standing Waves on a Ring

What is n in this picture?
(A) 1
(B) 5
(C) 10
(D) 20

(E) impossible to tell

De Broglie wavelengths and stationary orbitals

Given the deBroglie wavelength ($\lambda=\mathbf{h} / \mathbf{p}$) and the condition for standing waves on a ring ($2 \pi \mathbf{r}=\mathbf{n} \lambda$), what can you say about the angular momentum L of an electron if it is a deBroglie wave?

$$
\begin{aligned}
\text { (A) } L & =n \hbar / r \\
\text { (B) } L & =n \hbar \\
\text { (C) } L & =n \hbar / 2 \\
\text { (D) } L & =2 n \hbar / r \\
\text { (E) } L & =n \hbar / 2 r \\
& \text { (Note: } \hbar=\mathrm{h} / 2 \pi)
\end{aligned}
$$

Double slit experiments with electrons

1964: Claus Jönsson
Am. J. Phys. 42, 4 (1974)
1976: Merli, Missiroli and Pozzi
Am. J. Phys. 44, 306 (1976)
1989: Tonomura et al.
Am. J. Phys. 57, 117 (1989)
Single-electron Build-up of Interference Pattern
Think about the following observations/questions:

- For each electron you see a single light flash. What does this tell you about the nature of the electron?
- Can you predict where the next light flash will be? What does this mean?

