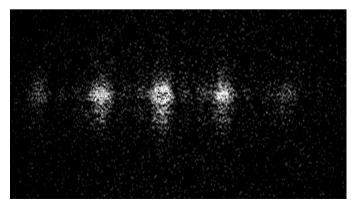


Summary so far:

- Individual light flashes, never two flashes at same time → particle feature
- Light flashes appear randomly with pattern
 → wave feature,
 probabilistic, must
 be property of electron

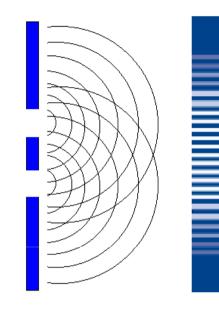
Double slit experiment with single photons



Same experiment with single photons:

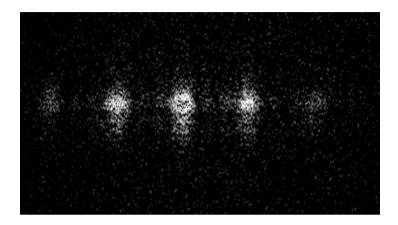
Individual flashes of light

Build up to double slit interference pattern


Pattern is a measure of the probability where the next photon will hit the screen

How can we describe the pattern?

What does this mean concerning our probabilistic interpretation?


Double slit interference

$$\int_{\Delta x} E^2 dx = \int_{\Delta x} (E_1 + E_2)^2 dx$$

- : Measure for intensity in Δx
- : Measure for brightness in Δx

Double slit experiment with single photons

$$\int_{\Delta x} E^2 dx = \int_{\Delta x} (E_1 + E_2)^2 dx$$
: Intensity in Δx

: Brightness in Δx

: Probability to find photon in Δx

$$\int_{\Delta x} E^2 dx = \text{Probability to find photon in } \Delta x$$

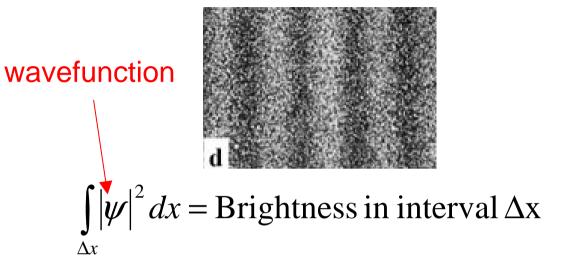
 $E^{2} = (E(x))^{2}$ = Probability to find photon at x = Probability density

E(x) = Probability amplitude = Wave function

According to our probabilistic interpretation:

What is $\int_{all x} E^2 dx = ?$

(A) 0 (B) 1


(C) Some value between 0 and 1

(D) Some positive value, but cannot be determined

According to our probabilistic interpretation, what can you say about $(E(x))^2$?

- (A) Could be any value between $-\infty$ and $+\infty$
- (B) Could be any value but not $\pm \infty$
- (C) Is either 0 or positive
- (D) Must be between 0 and 1
- (E) Something else

Double slit experiment with single electrons

= Probability to find electron in Δx

particle nature of electron

$$\int_{\Delta x} |\psi|^2 dx = \text{Probability to find electron in } \Delta x$$
$$|\psi|^2 = |\psi(x)|^2 = \text{Probability density}$$
$$\psi(x) = \text{Probability density amplitude}$$
$$= \text{Wave function}$$

Role of wavefunction in quantum mechanics <u>EM Waves (light/photons)</u>

Amplitude of E-field: E(x)

Probability density of finding a photon: E²

Wave equation from Maxwell equations

Matter Waves (electrons, atoms, etc.)

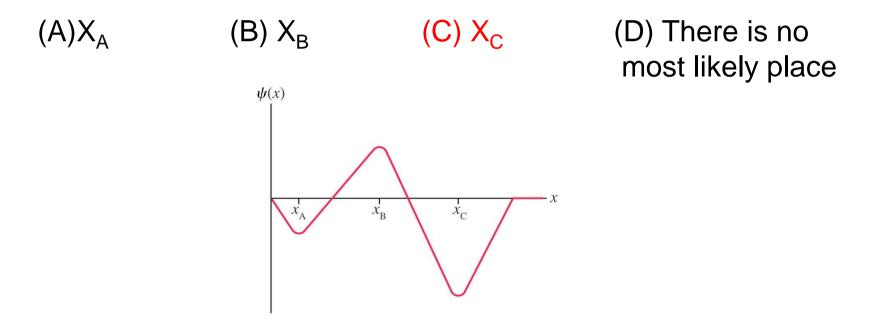
Amplitude of matter field: $\Psi(x)$

Probability density of finding a particle: $|\Psi|^2$

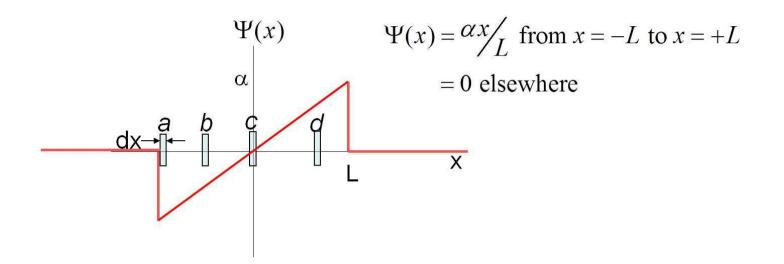
Wave equation = Schrödinger equation

Matter waves

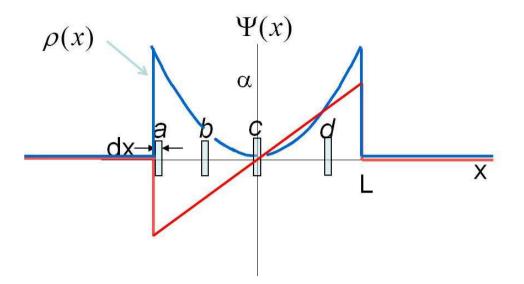
Describe a particle with a wave function $\Psi(x,y,z;t)$


Wave function contains information about the **probability** to find a particle at x, y and z & t

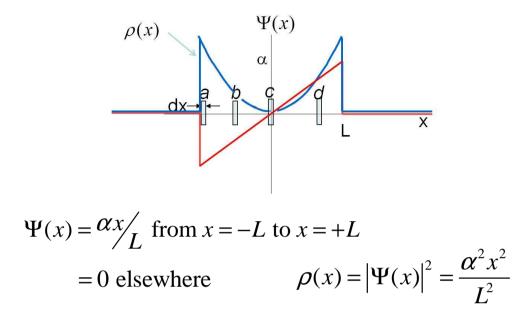
Wave function does **not** describe the path of the particle


In general: $\Psi(x,y,z;t)$ We simplify: $\Psi(x;t)$

Below is a wave function for a neutron. At what value of x is the neutron most likely to be found?


An electron is described by the following wave function

How do the probabilities of finding the electron near (within dx) of a,b,c, and d compare?


(A) d > c > b > a (B) a = b = c = d

(C) d > b > a > c (D) a > d > b > c

$$\Psi(x) = \frac{\alpha x}{L} \text{ from } x = -L \text{ to } x = +L$$

= 0 elsewhere $\rho(x) = |\Psi(x)|^2 = \frac{\alpha^2 x^2}{L^2}$

P(a)>P(d)>P(b)>P(c)

Can you determine α in terms of L?

(A)Yes, of course (B) Yes, maybe (C) No, not possible