Problem solving sessions

Tues: in G2B90
Wed and Thurs: in G2B63

Magnetic Moment of a Current Loop

$$
\vec{a}=\pi r^{2} \cdot \hat{a}
$$

\hat{a} points in the direction perpendicular to the plane of the current loop, in the direction given by the right-hand rule.

The torque does not cause the magnetic moment vector of the current loop to flip directions.

Since $\Phi=$ constant, the projection of the magnetic moment vector onto the direction of the B-field does not change while the current loop is interacting with the B-field.

Magnetic Moment in a Non-Uniform Magnetic Field

Stern-Gerlach experiment

Can the observation (5) in the Stern-Gerlach experiment be due to the quantization of the orbital angular momentum? (A) Yes (B) No \quad (C) Cannot decide

Stern-Gerlach experiment

Electron has an inherent magnetic moment due to an inherent angular momentum (property of electron, such as mass and charge).
Inherent angular momentum is called spin.
Spin is pure quantum phenomenon, no classical analogue
Magnetic moment of the electron is the Bohr magneton $m_{B}=\frac{e \hbar}{2 m_{e}}$
Projection of spin: $S_{z}=m_{s} \hbar \quad$ with $m_{s}= \pm 1 / 2$
Projections (components) of spin are complementary variables

Spin of atoms

Some atoms have more than two possible projections of the magnetic moment vector along a given axis, but we will only deal with "two-state" systems when talking about atomic spin.

When we say a particle is measured as "spin up" (or down) along a given axis, we are saying that we measured the projection of the magnetic moment along that axis ($+1 / 2$ or $-1 / 2$), and observed it exiting the plus-channel (minus-channel) of a Stern-Gerlach type apparatus.

A simplified Stern-Gerlach analyzer

Atoms are injected on left hand side as either

- Ensemble of atoms with randomly oriented spin (magnetic moment) or
- Ensemble of atom in a "prepared spin (magnetic moment) state"

A simplified Stern-Gerlach analyzer

Suppose we inject atoms prepared in $\mid \uparrow_{z}>$. What are the probabilities that the atoms will leave through the two exit channels?
(A) $\uparrow: 50 \% ~ \downarrow: 50 \%$
(B) $\uparrow: 100 \% ~ \downarrow: 0 \%$
(C) $\uparrow: 0 \% \downarrow: 100 \%$
(D) Other
(E) Not enough information to decide

A simplified Stern-Gerlach analyzer

Suppose we inject atoms prepared in $\left|\uparrow_{x}\right\rangle$. What are the probabilities that the atoms will leave through the two exit channels?
(A) $\uparrow: 50 \% \downarrow: 50 \%$
(B) $\uparrow: 100 \% ~ \downarrow: 0 \%$
(C) $\uparrow: 0 \% \downarrow: 100 \%$
(D) Other
(E) Not enough information to decide

For atoms entering with spin up at angle θ (with respect to + axis)

For $\Theta=0,100 \%=\cos ^{2}\left(0^{\circ}\right)$ of atoms exit from " + channel"
For $\Theta=90^{\circ}, 50 \%=\cos ^{2}\left(45^{\circ}\right)$ of atoms exit from " + channel"
For $\Theta=180^{\circ}, 0 \%=\cos ^{2}\left(90^{\circ}\right)$ of atoms exit from " + channel"
For arbitrary Θ : atoms exit + channel with probability: $P[\uparrow\rangle]=\cos ^{2}\left(\frac{\theta}{2}\right)$
What is the probability that atoms (for arbitrary Θ) exit "- channel"?

$$
P[\downarrow \downarrow]=\sin ^{2}\left(\frac{\theta}{2}\right)
$$

Repeated spin measurements:

Ignore the atoms exiting from the minus-channel of Analyzer 1, and feed the atoms exiting from the plus-channel into Analyzer 2.

All of the atoms also leave from the plus-channel of Analyzer 2.

Analyzer 2 is now oriented horizontally (+x):

$$
\left|m_{Z}=+m_{B}\right\rangle
$$

Ignore the atoms exiting from the minus-channel of Analyzer 1, and feed the atoms exiting from the plus-channel into Analyzer 2.
What happens when these atoms enter Analyzer 2?
A) They all exit from the plus-channel.
B) They all exit from the minus-channel.
C) Half leave from the plus-channel, half from the minus-channel.
D) Nothing, the atoms' magnetic moments have zero projection along the $+x$-direction

Instead of horizontal, suppose Analyzer 2 makes an angle of 60° from the vertical. Analyzers $\mathbf{1} \& \mathbf{3}$ both are in $+z$ direction.

What is the probability for an atom leaving the plus-channel of Analyzer 2 to exit from the plus-channel of Analyzer 3?
A) 0%
B) 25%
C) 50%
D) 75%
E) 100%

Hint: Remember that $P\left[\left|\uparrow_{\theta}\right\rangle\right]=\cos ^{2}\left(\frac{\theta}{2}\right)$

