Analyzer 2 is now oriented downward:

Ignore the atoms exiting from the minus-channel of Analyzer 1, and feed the atoms exiting from the plus-channel into Analyzer 2.

What happens when these atoms enter Analyzer 2?
(A) They all exit from the plus-channel.
(B) They all exit from the minus-channel.

Problem solving sessions

Tues: in G2B90
Wed and Thurs: in G2B63

What would be the expectation (average) value for magnetic moment?

For continuous x

$$
\begin{aligned}
& \text { A) }-m_{B} \\
& \text { B) }-1 / 2 m_{B} \\
& \text { C) } 0 \\
& \text { D) }+1 / 2 m_{B} \\
& \text { E) }+m_{B}
\end{aligned}
$$

$$
\langle x\rangle=\int_{-\infty}^{+\infty} x \rho(x) d x
$$

For Discrete x

$$
\langle x\rangle=\sum_{i=1}^{n} x_{i} P\left(x_{i}\right)
$$

For atoms entering with spin up at angle θ (with respect to + axis)

For $\Theta=0,100 \%=\cos ^{2}\left(0^{0}\right)$ of atoms exit from " + channel"
For $\Theta=90^{\circ}, 50 \%=\cos ^{2}\left(45^{\circ}\right)$ of atoms exit from " + channel"
For $\Theta=180^{\circ}, 0 \%=\cos ^{2}\left(90^{\circ}\right)$ of atoms exit from "+ channel"
For arbitrary Θ : atoms exit + channel with probability: $P[\uparrow\rangle]=\cos ^{2}\left(\frac{\theta}{2}\right)$
What is the probability that atoms (for arbitrary Θ) exit "- channel"?

$$
P[\downarrow\rangle]=\sin ^{2}\left(\frac{\theta}{2}\right)
$$

Instead of horizontal, suppose Analyzer 2 makes an angle of 60° from the vertical. Analyzers $1 \& 3$ both are in $+z$ direction.

What is the probability for an atom leaving the plus-channel of Analyzer 2 to exit from the plus-channel of Analyzer 3?
(A) 0%
(B) 25%
(C) 50%
(D) 75%
(E) 100%

Hint: Remember that $P\left[\left|\uparrow_{\theta}\right\rangle\right]=\cos ^{2}\left(\frac{\theta}{2}\right)$

What is the probability for an atom entering Analyzer 1
to exit from the plus-channel of Analyzer 3?
(Use: $\mathrm{P}(1+)=$ probability to exit + channel of analyzer 1)
(A) $P(1+)+P(2+)+P(3+)$
(B) $P(1+)-P(2+)-P(3+)$
(C) $P(1+) \times P(2+) \times P(3+)$
(D) $P(1+) \div P(2+) \div P(3+)$
(E) Other

