Analyzer 2 is now oriented downward:

Ignore the atoms exiting from the *minus-channel* of Analyzer 1, and feed the atoms exiting from the *plus-channel* into Analyzer 2.

What happens when these atoms enter **Analyzer 2**?

(A) They all exit from the plus-channel.

(B) They all exit from the minus-channel.

Problem solving sessions

What would be the expectation (average) value for magnetic moment?

For continuous x

$$\langle x \rangle = \int_{-\infty}^{+\infty} x \,\rho(x) \,dx$$

For Discrete x

$$\langle x \rangle = \sum_{i=1}^{n} x_i P(x_i)$$

 $A) - m_{-}$

For atoms entering with spin up at angle θ (with respect to + axis)

For $\Theta = 0$, 100% = cos²(0⁰) of atoms exit from "+ channel"

For $\Theta = 90^{\circ}$, 50% = cos²(45°) of atoms exit from "+ channel"

For $\Theta = 180^{\circ}$, $0\% = \cos^2(90^{\circ})$ of atoms exit from "+ channel"

For arbitrary Θ : atoms exit + channel with probability: $P[\uparrow\rangle] = \cos^2\left(\frac{\theta}{2}\right)$

What is the probability that atoms (for arbitrary Θ) exit "- channel"? $P[\downarrow\downarrow\rangle] = \sin^2\left(\frac{\theta}{2}\right)$

Instead of horizontal, suppose **Analyzer 2** makes an angle of 60^o from the vertical. **Analyzers 1 & 3** both are in +z direction.

What is the *probability* for an atom leaving the *plus-channel* of **Analyzer 2** to exit from the *plus-channel* of **Analyzer 3**?

(A) 0% (B) 25% (C) 50% (D) 75% (E) 100% Hint: Remember that $P[|\uparrow_{\theta}\rangle] = \cos^2\left(\frac{\theta}{2}\right)$

What is the *probability* for an atom entering **Analyzer 1** to exit from the *plus-channel* of **Analyzer 3**? (Use: P(1+) = probability to exit + channel of analyzer 1)

(A) P(1+) + P(2+) + P(3+) (B) P(1+) - P(2+) - P(3+)

(C) $P(1+) \times P(2+) \times P(3+)$

(D) $P(1+) \div P(2+) \div P(3+)$

(E) Other