What happens when wires are so small that QM does determine their behavior? \& can we take advantage of thi\$?

We virtually ignore the astonishing range of scientific and practical applications that quantum mechanics undergirds: today an estimated 30 percent of the U.S. gross national product is based on inventions made possible by quantum mechanics, from semiconductors in computer chips to lasers in compact-disc players, magnetic resonance imaging in hospitals, and much more.

Max Tegmark and John Archibald Wheeler Sci.American, Feb. 2001
Phys 2130, Day 30:
Questions?
Review of Quantum Wells
\& tunneling

Nanotechnology: how small does a wire have to be before movement of electrons starts to depend on size and shape due to quantum effects?

Look at energy level spacing compared to thermal energy,

 $k T=1 / 40 \mathrm{eV}$ at room temp.
Calculate energy levels for electron in wire of length L.

 Know spacing big for 1 atom, what is L when E is $\sim 1 / 40 \mathrm{eV}$?

Figure out $\mathrm{V}(\mathrm{x})$, then figure out how to solve, what solutions mean physically.

Wire (light bulb filament)	Single atom (discharge lamps)
Hot electrons. very large \# close energy levels (metal) Radiate spectrum of colors. Mostly IR.	Electron jumps to lower levels. Only specific wavelengths.
	120 Vor more with long tube Need Quantum

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+V(x, t) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, t)}{\partial t}
$$

Most physical situations, like H atom, no time dependence in V ! simplification \#1 when $\mathrm{V}(\mathrm{x})$ only. (works in 1D or 3D) (important, will use in all Shrod. Eq' n problems!!)
$\Psi(\mathrm{x}, \mathrm{t})$ separates into position part dependent part $\psi(\mathrm{x})$ and time dependent part $\Phi(\mathrm{t})=\exp (-\mathrm{iEt} / \hbar) . \Psi(\mathrm{x}, \mathrm{t})=\psi(\mathrm{x}) \Phi(\mathrm{t})$
plug in, get equation for $\psi(x)$
You did this on your HW.

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+V(x) \psi(x)=E \psi(x)
$$

what is in book With $V(x)$ for
$U(x)$
"time independent Schrodinger equation"

1. Figure out what $V(x, t)$ is, for situation given.

$$
V(x, t)=\text { potential energy of the electron }
$$

\rightarrow What is it as a function of position?
\rightarrow Is it changing with time? (Too complicated)
In free space, really long wire: In an infinite square well:

In a wire:

In H-atom (3-D ... complicated):

Where does the electron want to be?
\Rightarrow potential energy vs position, $\mathrm{V}(\mathrm{x})$ \& boundary conditions.

Electron wants to be at position where
a. $V(x)$ is largest
b. $V(x)$ is lowest
c. Kin. Energy > V(x)
d. Kin. E. < V(x)
e. where elec. wants to be does not depend on $V(x)$

but lot of e's move around to lowest PE
repel other electrons = potential energy near that spot higher. as more electrons fill in, potential energy for later ones gets flatter and flatter. For top ones, is VERY flat.
$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+V(x) \psi(x)=E \psi(x)$

$x<0, V(x)=4.7 \mathrm{eV}$ $x>L, V(x)=4.7 \mathrm{eV}$
 $0<x<L, V(x)=0$

How to solve?

1. mindless mathematician approach:
find Ψ in each region, make solutions match at boundaries, normalize.

Works, but bunch of math.

2. Clever physicist approach.

Reasoning to simplify how to solve.
Electron energy not much more than $\sim \mathrm{kT}=0.025 \mathrm{eV}$.
Where is electron likely to be?

What is chance it will be outside of well?

solution a lot like microwave \& guitar string

NOTE:
Book uses "rigid box" for "infinite square well"

$25 E_{1}$ $16 E_{1}$ $9 E_{1}$ $4 E_{1}$ $\frac{E_{1}}{0}$ How exci a. m b. e c. m	 ability of finding electron close to $\mathrm{L} / 2$ if in $\mathrm{n}=3$ mpared to probability for when $\mathrm{n}=2$ excited state? kely for $n=3$. or both $n=2$ and 3 . kely for $n=2$

A quick word about asymmetric wells

Careful about plotting representations.... Sometimes we' re jerks

Need to solve for exact Potential Energy curve: $\mathrm{V}(\mathrm{x})$: small chance electrons get out of wire $\psi(x<0$ or $x>L) \sim 0$, but not exactly 0 !

wire

Important for thinking about "Quantum tunneling":
Radioactive decay
Scanning tunneling microscope to study surfaces

What functional forms of $\psi(x)$ work?
a. $e^{\mathrm{i} \alpha \mathrm{x}}$
b. $\sin (\alpha x)$
c. $e^{\alpha x}$
d. more than one of these

What will wave function in Region III look like?
What makes sense for constants A and B ?
a. A must be 0
b. B must be 0
c. A and B must be equal
d. $A=0$ and $B=0$
e. A and B can be anything, need more info.

$$
\frac{d^{2} \psi(x)}{d x^{2}}=\frac{2 m}{\hbar^{2}}(V-E) \psi(x)
$$

Electron is delocalized ... spread out.
Some small part of wave is where Total Energy is less than potential energy!

	$\mathrm{E}_{\text {electron }}$
0 L $1 / \alpha$	
wire	$\frac{d^{2} \psi(x)}{d x^{2}}=\frac{2 m}{\hbar^{2}}(V-E) \mu(x)=\alpha^{2} \psi(x)$
How far does wave extend into this "classically forbidden" region?	$\alpha=\sqrt{\frac{2 m}{\hbar^{2}}(V-E)}$
$\psi(x)=B e^{-\alpha x}$	α big -> quick decay α small -> slow decay
$\begin{aligned} & \text { Measure of penetration depth }=1 / \alpha=\eta \text { (Knight book) } \\ & \rightarrow \psi \text { decreases by factor of } 1 / \mathrm{e}\end{aligned}$	
For V-E = 4.7eV, $1 / \alpha . .9 \times 10^{-11}$	${ }^{11}$ meters (very small \sim an atom!!!)

What changes could increase how far wave penetrates into classically forbidden region?
(And so affect chance of tunneling into adjacent wire)

Thinking about α and penetration distance
Under what circumstances would you have a largest penetration?
Order each of the following case from smallest to largest.

$$
\psi(x)=B e^{-\alpha x} \quad \alpha=\sqrt{\frac{2 m}{\hbar^{2}}(V-E)}
$$

To get largest penetration (tunneling), which Potential curve for a given energy level?

Thinking about α and penetration distance
Under what circumstances would you have a largest penetration?
Order each of the following case from smallest to largest.

To get largest penetration (tunneling), which total energy level for a fixed potential curve?

$$
\begin{gathered}
\psi(x)=B e^{-\alpha x} \\
\alpha=\sqrt{\frac{2 m}{\hbar^{2}}(V-E)}
\end{gathered}
$$

