Golly... tunneling seemed pretty abstract... I wonder what those ideas could be applied to? Hmmm...

Day 31:
Questions?
Reminders:
Reminders: Schrödinger Wave Eq’ n Potential Wells \& Tunneling

HW
Next up: STMs \& Nukes

If the total energy E of the electron is LESS than the work function of the metal, V_{0}, when the electron reaches the end of the wire, (and no other wire is near by) it will...
A. stop.
B. be reflected back.
C. exit the wire and keep moving to the right.
D. either be reflected or transmitted with some probability.
E. I have *no* idea

Once you have amplitudes,can draw wave function:

water wave ~ analogy for reflection and tunneling
flexible rubber barrier. Too
high for wave to go over
$\begin{array}{lll}\text { I } & & \\ \text { I } & \text { I } & \text { stretched barrier } \\ \text { I } & \text { higher potential } \\ \text { I/ } & \text { energy } \\ \text { II } & \text { bave penetrates } \\ \text { but still all reflects. }\end{array}$

If very very long wire gets closer and closer to this very short, what will eventually happen?
a. electron is "shared" between wires, with fraction in each constant over time
b. the electron will flow away through wire 2
c. electron will jump back and forth between wire 1 and wire 2
d. electron stays in wire 1.
e. something else happens.

